Main Article Content

Syandoval Triska Ananda Nurmala
Yayuk Putri Rahayu
Ainil Fithri Pulungan
Dikki Miswanda

Page: 1594-1611

Abstract

Background: Fungal infections, particularly those caused by Candida albicans, are a significant health problem in tropical countries such as Indonesia. Humid environmental conditions, inadequate sanitation, high population density, and low socioeconomic levels contribute to the high prevalence of fungal infections. Papaya leaves (Carica papaya L.) are known to contain bioactive compounds with antifungal potential; however, their effectiveness can be enhanced through nanoparticle formulation. Objective: This study aimed to formulate nanoparticles of ethanol extract from papaya leaves and evaluate their antifungal activity against Candida albicans by comparing the Minimum Inhibitory Concentration (MIC) and Minimum Fungicidal Concentration (MFC) values between the conventional extract and the nanoparticle extract. Methods: This experimental study utilized ethanol extract of papaya leaves and its nanoparticle formulation at varying concentrations. Particle size was characterized using a Particle Size Analyzer (PSA). Antifungal activity was tested against Candida albicans ATCC 10231 using broth and agar dilution methods as well as the disk diffusion method. Data were statistically analyzed using one-way ANOVA. Results: The nanoparticle extract exhibited a smaller particle size (330.27 nm) compared to the conventional extract (2203.45 nm). The MIC of the nanoparticle extract (1.25%) was lower than that of the conventional extract (12.5%), while the MFC of the nanoparticle extract (5%) was equivalent to that of the conventional extract (50%). The disk diffusion test showed that the 5% nanoparticle extract had an inhibition zone of 21.6 mm, classified as sensitive and comparable to the 50% conventional extract. Conclusion: The nanoparticle formulation of papaya leaf extract enhanced antifungal efficacy, enabling a tenfold dose reduction compared to the conventional extract. These findings highlight the potential of nanoparticles as a more efficient alternative therapy for fungal infections.

Downloads

Download data is not yet available.

Article Details

How to Cite
Nurmala, S. T. A., Rahayu , Y. P., Pulungan, A. F., & Miswanda, D. (2025). Minimum Inhibitory Concentration and Minimum Bactericidal Concentration of Papaya Leaf (Carica papaya L.) Ethanol Extract and Nanoparticles Against Candida albicans. Journal of Pharmaceutical and Sciences, 8(3), 1594–1611. https://doi.org/10.36490/journal-jps.com.v8i3.999
Section
Original Articles

References

Marbun RAT. Uji aktivitas ekstrak daun pirdot (Sauraia vulcani Korth.) terhadap pertumbuhan Candida albicans secara in vitro. J Bios Logos 2021;11:1–6. DOI: https://doi.org/10.35799/jbl.11.1.2021.30564

Kurniawan JA. Uji Aktivitas Antijamur Ekstrak Rimpang Binahong (Anredera cordifolia (Tenore) Steen) Terhadap Jamur Candida albicans serta Skrining Fitokimianya 2009.

A’yun Ainun Nikmati Laily Q. Analisis fitokimia daun pepaya (Carica papaya L.) di balai penelitian tanaman aneka kacang dan umbi, Kendalpayak, Malang. Pros KPSDA 2015;1.

Mauseth JD. Botany: an introduction to plant biology. Jones & Bartlett Publishers; 2014.

Nuryanti S. Aktivitas antifungi sari daun pepaya (Carica papaya L.) terhadap candida albicans. As-Syifaa J Farm 2017;9:1–23. DOI: https://doi.org/10.33096/ja.v9i2.275

Suni NA, Wowor VNS, Leman MA. Uji daya hambat rebusan daun pepaya (Carica papaya) terhadap pertumbuhan Candida albicans pada plat resin akrilik polimerisasi panas. E-GiGi 2017;5. DOI: https://doi.org/10.35790/eg.5.1.2017.15524

Martien R, Adhyatmika A, Irianto IDK, Farida V, Sari DP. Perkembangan teknologi nanopartikel sebagai sistem penghantaran obat. Maj Farm 2012;8:133–44.

Fitri D, Kiromah NZW, Widiastuti TC. Formulasi Dan Karakterisasi Nanopartikel Ekstrak Etanol Daun Salam (Syzygium polyanthum) Pada Berbagai Variasi Komposisi Kitosan Dengan Metode Gelasi Ionik. JPSCR J Pharm Sci Clin Res 2020;5:61. https://doi.org/10.20961/jpscr.v5i1.39269. DOI: https://doi.org/10.20961/jpscr.v5i1.39269

Buzea C, Pacheco II, Robbie K. Nanomaterials and nanoparticles: sources and toxicity. Biointerphases 2007;2:MR17–71. DOI: https://doi.org/10.1116/1.2815690

Rawat M, Singh D, Saraf S, Saraf S. Nanocarriers: promising vehicle for bioactive drugs. Biol Pharm Bull 2006;29:1790–8. DOI: https://doi.org/10.1248/bpb.29.1790

Depkes RI. Materia Medika (Indonesia Medical Materials). 1989.

Kesehatan D. Materia Medika Indonesia Jilid II. Jakarta Dep Kesehat Republik Indones 1978.

Anggraeni R. Uji Karakteristik Simplisia Buah Andaliman (Zanthoxylum acanthopodium DC.). JIFI (Jurnal Ilm Farm Imelda) 2020;3:32–8. https://doi.org/10.52943/jifarmasi.v3i2.210. DOI: https://doi.org/10.52943/jifarmasi.v3i2.210

Depkes RI. Farmakope Herbal Indonesia. Jakarta Dep Kesehat Republik Indones 2008.

Kemenkes.RI. Farmakope Herbal Indonesia. Edisi II. Jakarta: kementrian Kesehatan RI; 2017.

M. Natsir D, Sartini. Dasar–Dasar Mikrobiologi Farmasi. 3rd ed. Makassar: Lembaga penerbit universitas Hasanudin (lephas); 2018.

Octaviani M, Fadila F. Uji aktivitas antijamur sari buah belimbing wuluh (Averrhoa bilimbi L.) terhadap jamur candida albicans. J Katalisator 2018;3:125–33. DOI: https://doi.org/10.22216/jk.v3i2.3309

Sari NKY, Permatasari AAAP, Sumadewi NLU. Uji Aktivitas Anti Fungi Ekstrak Daun Kamboja Putih (Plumeria acuminata) terhadap Pertumbuhan Jamur Candida albicans. J Media Sains 2019;3:28–31. DOI: https://doi.org/10.36002/jms.v3i1.697

Hudzicki J. Kirby-Bauer disk diffusion susceptibility test protocol. Am Soc Microbiol 2009;15:1–23.

Maryam F, Taebe B, Toding DP. Pengukuran parameter spesifik dan non spesifik ekstrak etanol daun matoa (Pometia pinnata JR & G. Forst). J Mandala Pharmacon Indones 2020;6:1–12. DOI: https://doi.org/10.35311/jmpi.v6i01.39

Sutomo S, Hasanah N, Arnida A, Sriyono A. Standardisasi simplisia dan ekstrak daun matoa (Pometia pinnata JR Forst & G. Forst) asal Kalimantan Selatan. J Pharmascience 2021;8:101–10. DOI: https://doi.org/10.20527/jps.v8i1.10275

Li X, Robinson SM, Gupta A, Saha K, Jiang Z, Moyano DF, et al. Functional Gold Nanoparticles as Potent Antimicrobial Agents against Multi-Drug-Resistant Bacteria. ACS Nano 2014;8:10682–6. https://doi.org/10.1021/nn5042625. DOI: https://doi.org/10.1021/nn5042625

Kumowal S, Fatimawali F, Jayanto I. Uji aktivitas antibakteri nanopartikel ekstrak lengkuas putih (Alpinia galanga (L.) Willd) terhadap bakteri Klebsiella pneumoniae. Pharmacon 2019;8:781–90. DOI: https://doi.org/10.35799/pha.8.2019.29354

Warokka KE, Wuisan J, . J. Uji konsentrasi hambat minimum (KHM) ekstrak daun binahong (Anredera cordifolia Steenis) sebagai antibakteri terhadap pertumbuhan Streptococcus mutans. E-GIGI 2016;4. https://doi.org/10.35790/eg.4.2.2016.13766. DOI: https://doi.org/10.35790/eg.4.2.2016.13766

Zanuary AR. Efektifitas daya antibakteri ekstrak daun matoa Pometia (Pinnata JR & G. Fors) dalam berbagai konsentrasi terhadap pertumbuhan Streptococcus Mutans (secara in vitro) 2014.

Humphries RM, Ambler J, Mitchell SL, Castanheira M, Dingle T, Hindler JA, et al. CLSI methods development and standardization working group best practices for evaluation of antimicrobial susceptibility tests. J Clin Microbiol 2018;56:10–1128. DOI: https://doi.org/10.1128/JCM.01934-17

Barry AL. An overview of the Clinical and Laboratory Standards Institute (CLSI) and its impact on antimicrobial susceptibility tests. Antimicrob Susceptibility Test Protoc 2007;1. DOI: https://doi.org/10.1201/9781420014495.ch1

Weinstein MP, Lewis JS. The clinical and laboratory standards institute subcommittee on antimicrobial susceptibility testing: background, organization, functions, and processes. J Clin Microbiol 2020;58:10–1128. DOI: https://doi.org/10.1128/JCM.01864-19

Gunawan H, Rahayu YP. Uji Aktivitas Antibakteri Formulasi Sediaan Pasta Gigi Gel Ekstrak Daun Salam (Syzygium polyanthum (Wight) Walp) Terhadap Streptococcus mutans. FARMASAINKES J Farm Sains, Dan Kesehat 2021;1:56–67. DOI: https://doi.org/10.32696/fjfsk.v1i1.817

Rahayu YP, Lubis MS, Mutti-in K. Formulasi Sediaan Sabun Cair Antiseptik Ekstrak Biji Pepaya (Carica papaya L.) Dan Uji Efektivitas Antibakterinya Terhadap Staphylococcus aureus. Pros. Semin. Nas. Has. Penelit., vol. 4, 2021, p. 373–88.

Fahira N, Rahayu YP, Nasution HM, Nasution MP. Uji aktivitas antibakteri nanopartikel ekstrak etanol daun matoa ( Pometia pinnata J . R Forst & G . Forst ) terhadap bakteri Streptococcus mutans. J Ris Kefarmasian Indones 2023;5:100–19. DOI: https://doi.org/10.33759/jrki.v5i1.327

Rahayu YP, Sirait US. Formulasi Sediaan Obat Kumur (Mouthwash) Ekstrak Daun Salam (Syzygium polyanthum (Wight) Walp.) Dan Uji Antibakterinya Terhadap Streptococcus mutans Secara In Vitro. Pros. Semin. Nas. Has. Penelit., vol. 5, 2022, p. 370–9.

Siregar HN, Rahayu YP, Nasution HM, Nasution MP. Uji Aktivitas Antibakteri Nanopartikel Ekstrak Etanol Daun Matoa (Pometia pinnata JR Forst & G. Forst) Terhadap Bakteri Escherichia coli. J Ris Kefarmasian Indones 2023;5:24–41. DOI: https://doi.org/10.33759/jrki.v5i1.329

Khofifah N, Rahayu YP, Nasution HM, Miswanda D. Penentuan konsentrasi hambat minimum dan konsentrasi bunuh minimum ekstrak dan nanopartikel ekstrak daun pepaya (Carica Papaya L.) terhadap Bakteri Cutibacterium acnes. J Pharm Sci 2025:51–66. DOI: https://doi.org/10.36490/journal-jps.com.v8i1.720

Rafika IM, Rahayu YP, Nasution HM, Miswanda D. Konsentrasi Hambat Minimum dan Konsentrasi Bunuh Minimum Ekstrak dan Nanopartikel Ekstrak Etanol Daun Kubis (Brassica oleracea L.) Terhadap Malassezia furfur. J Pharm Sci 2025:1018–32. DOI: https://doi.org/10.36490/journal-jps.com.v8i2.874

Safira L, Rahayu YP, Nasution HM, Miswanda D. Konsentrasi hambat minimum dan konsentrasi bunuh minimum ekstrak etanol dan nanopartikel ekstrak etanol daun matoa (Pometia pinnata) terhadap Cutibacterium acnes. J Pharm Sci 2025:450–66. DOI: https://doi.org/10.36490/journal-jps.com.v8i1.786

Sony S, Rahayu YP, Nasution HM, Rani Z. Konsentrasi Hambat Minimum dan Konsentrasi Bunuh Minimum Ekstrak Dan Nanopartikel Ekstrak Daun Pometia pinnata Terhadap Staphyloccocus aureus dan Escherichia coli. J Pharm Sci 2025:1047–65. DOI: https://doi.org/10.36490/journal-jps.com.v8i2.885

Wirawan D, Rahmat D. Formulasi Nanopartikel Ekstrak Temu Lawak Berbasis Kitosan Sebagai Antijerawat. Med Sains J Ilm Kefarmasian 2019;3:153–8. DOI: https://doi.org/10.37874/ms.v3i2.79

Jeevanandam J, Barhoum A, Chan YS, Dufresne A, Danquah MK. Review on nanoparticles and nanostructured materials: history, sources, toxicity and regulations. Beilstein J Nanotechnol 2018;9:1050–74. DOI: https://doi.org/10.3762/bjnano.9.98

Ahmed S, Ahmad M, Swami BL, Ikram S. A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: A green expertise. J Adv Res 2016;7:17–28. https://doi.org/https://doi.org/10.1016/j.jare.2015.02.007. DOI: https://doi.org/10.1016/j.jare.2015.02.007

Rai M, Yadav A, Gade A. Silver nanoparticles as a new generation of antimicrobials. Biotechnol Adv 2009;27:76–83. DOI: https://doi.org/10.1016/j.biotechadv.2008.09.002

Sirelkhatim A, Mahmud S, Seeni A, Kaus NHM, Ann LC, Bakhori SKM, et al. Review on zinc oxide nanoparticles: antibacterial activity and toxicity mechanism. Nano-Micro Lett 2015;7:219–42. DOI: https://doi.org/10.1007/s40820-015-0040-x

Zhao L, Seth A, Wibowo N, Zhao C-X, Mitter N, Yu C, et al. Nanoparticle vaccines. Vaccine 2014;32:327–37. DOI: https://doi.org/10.1016/j.vaccine.2013.11.069

Khan I, Saeed K, Khan I. Nanoparticles: Properties, applications and toxicities. Arab J Chem 2019;12:908–31. DOI: https://doi.org/10.1016/j.arabjc.2017.05.011

Naito M, Yokoyama T, Hosokawa K, Nogi K. Nanoparticle technology handbook. Elsevier; 2018.

Hajipour MJ, Saei AA, Walker ED, Conley B, Omidi Y, Lee K, et al. Nanotechnology for targeted detection and removal of bacteria: opportunities and challenges. Adv Sci 2021;8:2100556. DOI: https://doi.org/10.1002/advs.202100556

Kim JS, Kuk E, Yu KN, Kim J-H, Park SJ, Lee HJ, et al. Antimicrobial effects of silver nanoparticles. Nanomedicine Nanotechnology, Biol Med 2007;3:95–101. DOI: https://doi.org/10.1016/j.nano.2006.12.001

Gupta D, Singh A, Khan AU. Nanoparticles as efflux pump and biofilm inhibitor to rejuvenate bactericidal effect of conventional antibiotics. Nanoscale Res Lett 2017;12:454. DOI: https://doi.org/10.1186/s11671-017-2222-6

Hwang ET, Lee JH, Chae YJ, Kim YS, Kim BC, Sang B, et al. Analysis of the toxic mode of action of silver nanoparticles using stress‐specific bioluminescent bacteria. Small 2008;4:746–50. DOI: https://doi.org/10.1002/smll.200700954

Benoit DSW, Sims Jr KR, Fraser D. Nanoparticles for oral biofilm treatments. ACS Nano 2019;13:4869–75. DOI: https://doi.org/10.1021/acsnano.9b02816

Nguyen T-K, Lam SJ, Ho KKK, Kumar N, Qiao GG, Egan S, et al. Rational design of single-chain polymeric nanoparticles that kill planktonic and biofilm bacteria. ACS Infect Dis 2017;3:237–48. DOI: https://doi.org/10.1021/acsinfecdis.6b00203

Liu Y, Naha PC, Hwang G, Kim D, Huang Y, Simon-Soro A, et al. Topical ferumoxytol nanoparticles disrupt biofilms and prevent tooth decay in vivo via intrinsic catalytic activity. Nat Commun 2018;9:2920. DOI: https://doi.org/10.1038/s41467-018-05342-x

Mohanty A, Tan CH, Cao B. Impacts of nanomaterials on bacterial quorum sensing: differential effects on different signals. Environ Sci Nano 2016;3:351–6. DOI: https://doi.org/10.1039/C5EN00273G

Gómez-Gómez B, Arregui L, Serrano S, Santos A, Pérez-Corona T, Madrid Y. Unravelling mechanisms of bacterial quorum sensing disruption by metal-based nanoparticles. Sci Total Environ 2019;696:133869. DOI: https://doi.org/10.1016/j.scitotenv.2019.133869

Hayat S, Muzammil S, Shabana null, Aslam B, Siddique MH, Saqalein M, et al. Quorum quenching: role of nanoparticles as signal jammers in Gram-negative bacteria. Future Microbiol 2019;14:61–72. DOI: https://doi.org/10.2217/fmb-2018-0257

Dewi MK, Ratnasari E, Trimulyono G. Aktivitas antibakteri ekstrak daun Majapahit (Crescentia cujete) terhadap pertumbuhan bakteri Ralstonia solanacearum penyebab penyakit layu. LenteraBio 2014;3:51–7.

Ayen RY, Rahmawati M. Aktivitas antibakteri ekstrak metanol daun sembung rambat (Mikania micrantha HBK) terhadap pertumbuhan bakteri Bacilluscereus IHB B 379 dan Shigella flexneri. Protobiont 2017;6:123–9.

Most read articles by the same author(s)

<< < 1 2 3 4 5 > >>