Uji efektivitas ekstrak etanol daun bayam hijau (Amaranthus hybridus L.) sebagai imunostimulan pada mencit putih jantan (Mus musculus)
Isi Artikel Utama
Page: 145-154
Abstrak
Sistem kekebalan tubuh memainkan peran penting dalam melindungi tubuh dari patogen, dan peningkatan aktivitasnya melalui imunostimulan sangat penting untuk meningkatkan kesehatan. Penelitian ini bertujuan untuk mengevaluasi potensi imunostimulasi dari ekstrak etanol daun bayam hijau (Amaranthus hybridus L.) pada mencit putih jantan (Mus musculus). Ekstrak etanol daun bayam hijau disiapkan dari daun amaranth hijau yang dikeringkan dan diuji untuk pengaruhnya terhadap aktivitas fagositosis menggunakan metode penghilangan karbon. Penyaringan fitokimia menunjukkan adanya flavonoid, saponin, tanin, dan steroid. Hewan percobaan dibagi menjadi lima kelompok: kontrol negatif (0,5% Na CMC), kontrol positif (Stimuno Forte®), dan tiga kelompok eksperimental yang menerima dosis ekstrak etanol yang berbeda (125 mg/kg, 250 mg/kg, dan 500 mg/kg berat badan). Hasil penelitian menunjukkan bahwa ekstrak etanol secara signifikan meningkatkan aktivitas fagositosis, dengan efek yang paling optimal diamati pada dosis 125 mg/kg berat badan. Indeks stimulasi meningkat dengan dosis yang lebih tinggi, menunjukkan efek imunostimulasi yang bergantung pada dosis. Penelitian ini menyimpulkan bahwa ekstrak etanol daun amaranth hijau dapat menjadi imunostimulan alami yang efektif, dengan dosis 125 mg/kg berat badan menjadi yang paling efektif dalam meningkatkan fungsi kekebalan tubuh pada tikus putih jantan. Temuan ini menunjukkan potensi amaranth hijau sebagai agen terapeutik untuk gangguan yang berkaitan dengan sistem kekebalan.
Unduhan
Rincian Artikel

Artikel ini berlisensiCreative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Referensi
Kobayashi T, Naik S, Nagao K. Choreographing immunity in the skin epithelial barrier. *Immunity*. 2019;50(3):552–65. https://doi.org/10.1016/j.immuni.2019.02.023. DOI: https://doi.org/10.1016/j.immuni.2019.02.023
Alhazmi HA, Najmi A, Javed SA, Sultana S, Al Bratty M, Makeen HA, et al. Medicinal plants and isolated molecules demonstrating immunomodulation activity as potential alternative therapies for viral diseases including COVID-19. Front Immunol. 2021;12:637553. https://doi.org/10.3389/fimmu.2021.637553. DOI: https://doi.org/10.3389/fimmu.2021.637553
Zebeaman M, Tadesse MG, Bachheti RK, Bachheti A, Gebeyhu R, Chaubey KK. Plants and plant-derived molecules as natural immunomodulators. BioMed Res Int. 2023;2023:7711297. https://doi.org/10.1155/2023/7711297. DOI: https://doi.org/10.1155/2023/7711297
Ruth ON, Unathi K, Nomali N, Chinsamy M. Underutilization versus nutritional-nutraceutical potential of the Amaranthus food plant: A mini-review. *Appl Sci.* 2021;11(15):6879. https://doi.org/10.3390/app11156879. DOI: https://doi.org/10.3390/app11156879
Balasubramanian T, Karthikeyan M, Muhammed Anees KP, Kadeeja CP, Jaseela K. Antidiabetic and antioxidant potentials of *Amaranthus hybridus* in streptozotocin-induced diabetic rats. *J Diet Suppl*. 2017;14(4):395-410. doi: 10.1080/19390211.2016.1265037. DOI: https://doi.org/10.1080/19390211.2016.1265037
FW, Hilou A, Millogo JF, Nacoulma OG. Phytochemical Composition, Antioxidant and Xanthine Oxidase Inhibitory Activities of Amaranthus cruentus L. and Amaranthus hybridus L. Extracts. Pharmaceuticals. 2012;5(6):613-628. doi:10.3390/ph5060613. DOI: https://doi.org/10.3390/ph5060613
Albuquerque U.P., Lima T.C., Monteiro J.S., Santos F.A., Bezerra M.A., Nunes X.P., et al. Medicinal plants of the Northeast region of Brazil: a historical overview. *Revista Brasileira de Farmacognosia*. 2008;18(6):877-892. doi: 10.1590/S0074-02762008000600010. DOI: https://doi.org/10.1590/S0074-02762008000600010
Ullah A, Munir S, Badshah SL, Khan N, Ghani L, Poulson BG, Emwas AH, Jaremko M. Important flavonoids and their role as a therapeutic agent. Molecules (Basel, Switzerland). 2020;25(22):5243. doi:10.3390/molecules25225243. DOI: https://doi.org/10.3390/molecules25225243
Ahmed S, Hanif S, Iftkhar T. Phytochemical profiling with antioxidant and antimicrobial screening of Amaranthus viridis L. leaf and seed extracts. Open J Med Microbiol. 2013;3(3):164-171. doi: 10.4236/ojmm.2013.33025. DOI: https://doi.org/10.4236/ojmm.2013.33025
Awad AM, Kumar P, Ismail-Fitry MR, Jusoh S, Ab Aziz MF, Sazili AQ. Green extraction of bioactive compounds from plant biomass and their application in meat as natural antioxidant. Antioxidants (Basel, Switzerland). 2021;10(9):1465. doi:10.3390/antiox10091465. DOI: https://doi.org/10.3390/antiox10091465
Plaskova A, Mlcek J. New insights of the application of water or ethanol-water plant extract rich in active compounds in food. Front Nutr. 2023;10:1118761. doi:10.3389/fnut.2023.1118761. DOI: https://doi.org/10.3389/fnut.2023.1118761
Leyva-López N, Gutierrez-Grijalva EP, Ambriz-Perez DL, Heredia JB. Flavonoids as Cytokine Modulators: A Possible Therapy for Inflammation-Related Diseases. Int J Mol Sci. 2016;17(6):921. doi:10.3390/ijms17060921. DOI: https://doi.org/10.3390/ijms17060921
Behl T, Kumar K, Brisc C, Rus M, Nistor-Cseppento DC, Bustea C, Corb Aron RA, Pantis C, Zengin G, Sehgal A, Kaur R, Kumar A, Arora S, Setia D, Chandel D, Bungau S. Exploring the multifocal role of phytochemicals as immunomodulators. *Biomed Pharmacother*. 2021;133:110959. doi:10.1016/j.biopha.2020.110959. DOI: https://doi.org/10.1016/j.biopha.2020.110959
Masopust D, Sivula CP, Jameson SC. Of Mice, Dirty Mice, and Men: Using Mice To Understand Human Immunology. J Immunol (Baltimore, Md. : 1950). 2017;199(2):383-8. doi:10.4049/jimmunol.1700453. DOI: https://doi.org/10.4049/jimmunol.1700453
Hickman DL, Johnson J, Vemulapalli TH, Crisler JR, Shepherd R. Commonly used animal models. In: Principles of Animal Research for Graduate and Undergraduate Students. 2017. p. 117–75. https://doi.org/10.1016/B978-0-12-802151-4.00007-4. DOI: https://doi.org/10.1016/B978-0-12-802151-4.00007-4
Novitasari PR, Nuraisyah F, Prihatmadi FA, Nugroho AD, Yudhana A, Akbar SA. Solvent effects on phytochemical screening test of red lemongrass (*Cymbopogon nardus* (L.) Rendl.) extract and its potential as antidiabetic agent. *J Food Pharm Sci*. 2023;11(1):788-794. doi: 10.22146/jfps.6310. DOI: https://doi.org/10.22146/jfps.6310
Maharaj A, Naidoo Y, Dewir YH, Rihan H. Phytochemical screening, and antibacterial and antioxidant activities of *Mangifera indica* L. leaves. *Horticulturae*. 2022;8(10):909. doi: 10.3390/horticulturae8100909. DOI: https://doi.org/10.3390/horticulturae8100909
Rezza F.U, Rosidah, Yuandani. Immunomodulator Activity of Puguntano (Picria fel-terrae Lour.) Extract in White Male Mice By Carbon Clearance Method. Indones J Pharmaceut Clin Res. 2020;3(2):19-24. doi: 10.32734/idjpcr.v3i2.4306. DOI: https://doi.org/10.32734/idjpcr.v3i2.4306
Jimoh MO, Okaiyeto K, Oguntibeju OO, Laubscher CP. A systematic review on Amaranthus-related research. Horticulturae. 2022;8(3):239. doi:10.3390/horticulturae8030239. DOI: https://doi.org/10.3390/horticulturae8030239
Chen S, Wang X, Cheng Y, Gao H, Chen X. A review of classification, biosynthesis, biological activities and potential applications of flavonoids. Molecules. 2023;28(13):4982. doi:10.3390/molecules28134982. DOI: https://doi.org/10.3390/molecules28134982
Bang JH, Lee KJ, Jeong WT, Han S, Jo IH, Choi SH, Cho H, Hyun TK, Sung J, Lee J, et al. Antioxidant activity and phytochemical content of nine Amaranthus species. Agronomy. 2021;11(6):1032. doi: 10.3390/agronomy11061032. DOI: https://doi.org/10.3390/agronomy11061032
Ndukwe GI, Clark PD, Jack IR. In vitro antioxidant and antimicrobial potentials of three extracts of Amaranthus hybridus L. leaf and their phytochemicals. Eur Chem Bull. 2020;9(7):164-173. doi:10.17628/ecb.2020.9.164-173. DOI: https://doi.org/10.17628/ecb.2020.9.164-173
Wutsqa YU, Suratman S, Sari SLA. Detection of terpenoids and steroids in Lindsaea obtusa with thin layer chromatography. Asian J Nat Prod Biochem. 2021;19(2):doi:10.13057/biofar/f190204. DOI: https://doi.org/10.13057/biofar/f190204
Gordon S. Phagocytosis: An immunobiologic process. Immunity. 2016;44(3):463-75. doi:10.1016/j.immuni.2016.02.026. DOI: https://doi.org/10.1016/j.immuni.2016.02.026
Baras MH, Bin-Hameed EA. Estimating the efficiency of phagocytic neutrophil cells and studying its risk factors among diabetic foot ulcers. J Phys Conf Ser. 2021;1900(1):012006. doi:10.1088/1742-6596/1900/1/012006. DOI: https://doi.org/10.1088/1742-6596/1900/1/012006
Svadlakova T, Holmannova D, Kolackova M, Malkova A, Krejsek J, Fiala Z. Immunotoxicity of carbon-based nanomaterials, starring phagocytes. Int J Mol Sci. 2022;23(16):8889. doi:10.3390/ijms23168889. DOI: https://doi.org/10.3390/ijms23168889
Kurnijasanti R, Wardani G, Mustafa MR, Sudjarwo SA. The immunostimulatory effects of fucoidan on the cellular and humoral immune response in Wistar rats. *Open Vet J.* 2024;14(8):1794–800. doi:10.5455/OVJ.2024.v14.i8.7. DOI: https://doi.org/10.5455/OVJ.2024.v14.i8.7
Mahima, Rahal A, Deb R, Latheef SK, Abdul Samad H, Tiwari R, Verma AK, et al. Immunomodulatory and therapeutic potentials of herbal, traditional/indigenous and ethnoveterinary medicines. Pakistan J Biol Sci. 2012;15(16):754-74. doi:10.3923/pjbs.2012.754.774. DOI: https://doi.org/10.3923/pjbs.2012.754.774
Efferth T, Koch E. Complex interactions between phytochemicals. The multi-target therapeutic concept of phytotherapy. Curr Drug Targets. 2011;12(1):122-32. doi:10.2174/138945011793591626. DOI: https://doi.org/10.2174/138945011793591626
Pérez-Cano FJ, Castell M. Flavonoids, inflammation and immune system. Nutrients. 2016 Oct 21;8(10):659. doi: 10.3390/nu8100659. DOI: https://doi.org/10.3390/nu8100659
Han L, Fu Q, Deng C, Luo L, Xiang T, Zhao H. Immunomodulatory potential of flavonoids for the treatment of autoimmune diseases and tumour. Scand J Immunol. 2021;95(1):e13106. doi:10.1111/sji.13106. DOI: https://doi.org/10.1111/sji.13106