Main Article Content

Sudana Fatahillah Pasaribu
Putra Chandra
Reno Irwanto
Citra Dewi Anggraini
Herviana Herviana

Page: 323-330


Type 2 diabetes mellitus (T2DM) is a degenerative disease caused by increased blood glucose levels. Therapeutic recommendations for treating T2DM are the implementation of healthy lifestyle and pharmacological interventions. Germinated Black Rice contain high levels of fiber, anthocyanins and flavonoids. Functional beverage products Germinated Black Rice (GEMAR) is expected to help improve blood glucose levels and body weight in T2DM sufferers. This study aims to analyze the effect of beverage GEMAR at doses of 3.8 and 7.6 g/200 gBW on fasting blood glucose and body weight in T2DM rats. Laboratory experimental research method with design pre-posttest control group design. Samples of 30 male Wistar rats were divided into 5 groups. The results of the study found that the fasting blood glucose (GDP) of the acarbose drug group, P1 (GEMAR 3.8 g/200 g BW) and P2 (GEMAR 7.6 g/200 g BW) were significantly different (p<0.001) compared to the negative control group. GDP reducing effect of acarbose drug treatment (148%), P1 (177%), and P2 (128%). Body weight in the acarbose, P1 and P2 drug groups were significantly different (p<0.001) compared to the negative control. The improved effect of the drug groups acarbose (4%), P1 (7%), and P2 (5%) compared with adaptation. This research concludes that GEMAR P1 and P2 functional beverage can reduce GDP levels and improve body weight T2DM rats.


Download data is not yet available.

Article Details

How to Cite
Pasaribu, S. F., Chandra, P., Irwanto, R., Anggraini, C. D., & Herviana, H. (2023). Antidiabetic effect of GEMAR (Germinated Black Rice) beverage on diabetes mellitus model rats. Journal of Pharmaceutical and Sciences, 6(5-si), 323–330.
Original Articles


American Diabetes Association. (2020). Standards Of Medical Care In Diabetes—2020 Abridged For Primary Care Providers. Clinical Diabetes: A Publication of the American Diabetes Association, 38(1), 10–30.

Asbaghi, O., Fouladvand, F., Gonzalez, M., Ashtary-Larky, D., Choghakhori, R., & Abbasnezhad, A. (2021). Effect of green tea on glycemic control in patients with type 2 diabetes mellitus: A systematic review and meta-analysis. Diabetes & Metabolic Syndrome: Clinical Research & Reviews, 15(1), 23–31.

Chaiyasut, C., Sivamaruthi, BS, Pengkumsri, N., Keapai, W., Kesika, P., Saelee, M., Tojing, P., Sirilun, S., … Lailerd, N. (2017). Germinated Thai Black Rice Extract Protects Experimental Diabetic Rats From Oxidative Stress And Other Diabetes-Related Consequences. Pharmaceuticals, 10(1), 1–16.

Chen, L., Pu, Y., Xu, Y., He, X., Cao, J., Ma, Y., & Jiang, W. (2022). Anti-diabetic and anti-obesity: Efficacy evaluation and exploitation of polyphenols in fruits and vegetables. Food Research International, 157, 111202.

Dewi, A., Widyastuti, N., & Probosari, E. (2020). Pengaruh Pemberian Tepung Sorgum (Sorghum bicolor L. Moench) terhadap Kadar Glukosa Darah Puasa Tikus Diabetes. Journal of Nutrition College, 7(1), 63–70.

International Diabetes Federation. (2021). IDF Diabetes Atlas 10 th Edition. In Diabetes Research and Clinical Practice (Vol. 102). Retrieved from

Jani, D. K., & Goswami, S. (2020). Antidiabetic activity of Cassia angustifolia Vahl. and Raphanus sativus Linn. leaf extracts. Journal of Traditional and Complementary Medicine, 10(2), 124.

Jiang, T., Huai, X., Li, J., Yang, N., Deng, L., Li, S., … He, J. (2020). Protein-bound anthocyanin compounds of purple sweet potato ameliorate hyperglycemia by regulating hepatic glucose metabolism in high-fat diet/streptozotocin-induced diabetic mice. Journal of Agricultural and Food Chemistry, 68(6), 1596-608.

Jiang, X., Xu, Q., Zhang, A., Liu, Y., Li, Z., Tang, H., … Zhang, D. (2021). Revealing the hypoglycemic effects and mechanism of GABA-rich germinated Adzuki beans on T2DM mice by untargeted serum metabolomics. Frontiers in Nutrition, 8, p.791191.

Jwad, S. M., & AL-Fatlawi, H. Y. (2022). Types of Diabetes and their Effect on the Immune System. J. Adv. Pharm. Pract, 7, 21–30.

Kalita, D., Holm, D., LaBarbera, D., Etrash, J., & Jayanty, S. (2018). Inhibition of α-glucosidase, α-amylase, and aldose reductase by potato polyphenolic compounds. PloS One, 13(1), p.e0191025.

Lee, Y., Lee, S., Jang, G., Lee, Y., Kim, M., Kim, Y., … Jeong, H. (2019). Antioxidative and antidiabetic effects of germinated rough rice extract in 3T3-L1 adipocytes and C57BLKS/J-db/db mice. Food & Nutrition Research, 63.

Marisa, N., Podojoyo, P., & Yuniarti, H. (2022). Pengaruh Pemberian Minuman “Kakatul” Terhadap Kadarglukosa Darah Penderita Diabetes Melitus. Nutrients, 2(1), 49–58.

Martini, R., Rahma, A., Kusharto, C., Riyadi, H., Sumantri, C., & Rohdiana, D. (2019). The Potential of White Tea (Camellia sinensis) and Kelor (Moringa oleifera) in Improving Lipid Profile and Histopathological Features of Pancreas in Streptozotocin-Induced Rats. Jurnal Gizi Dan Pangan, 14(1), 23–30.

Moein, S., Moein, M., & Javid, H. (2022). Inhibition of α-Amylase and α-Glucosidase of Anthocyanin Isolated from Berberis integerrima Bunge Fruits: A Model of Antidiabetic Compounds. Evidence-Based Complementary and Alternative Medicine.

Mongkontanawat, N., Ueda, Y., & Yasuda, S. (2021). Increased total polyphenol content, antioxidant capacity and γ-aminobutyric acid content of roasted germinated native Thai black rice and its microstructure. Food Science and Technology, 42, e34521.

Oliveira, H., Fernandes, A., Brás, N., Mateus, N., de Freitas, V., & Fernandes, I. (2020). Anthocyanins as antidiabetic agents—in vitro and in silico approaches of preventive and therapeutic effects. Molecules, 25(17), 3813.

Oliveira, M., da Cunha, A., Caetano, C., & Caldeira, CD. (2020). Silymarin attenuates hepatic and pancreatic redox imbalance independent of glycemic regulation in the alloxan-induced diabetic rat model. Biomedical and Environmental Sciences, 33(9), 690-700.

Pasaribu, S. F., Budiyanti, W., & Kartikasari, L. R. (2021). Analisis antosianin dan flavonoid ekstrak kecambah beras hitam. Jurnal Dunia Gizi, 4(1), 08-14.

Pasaribu, S. F., Wiboworini, B., & Kartikasari, L. R. (2021). Effect of Germinated Black Rice Krisna Extract on Fasting Blood Glucose and Body Weight in Diabetes Mellitus Rats. International Journal of Nutrition Sciences, 6(4), 194–200.

PERKENI. (2022). Pedoman Pengelolaan dan Pencegahan Diabetes Melitus Tipe 2 Dewasa di Indonesia 2021. In Global Initiative for Asthma. Jakarta. Retrieved from

Pratiwi, A. (2020). Pengaruh Pemberian Ekstrak Ubi Jalar Ungu terhadap Kadar Glukosa Darah dan MDA Hepar Tikus Hiperglikemia. Jurnal Ilmu Kesehatan Indonesia, 1(2), 117–124.

Qi, S., He, J., Han, H., Zheng, H., Jiang, H., Hu, C., … Li, X. (2019). Anthocyanin-rich extract from black rice (Oryza sativa L. Japonica) ameliorates diabetic osteoporosis in rats. Food & Function, 10(9), 5350–5360.

Reynolds, A. N., Akerman, A. P., & Mann, J. (2020). Dietary fibre and whole grains in diabetes management: Systematic review and meta-analyses. PLoS Medicine, 17(3), e1003053.

Sabahi, Z., Khoshnood-Mansoorkhani, M., Rahmani Namadi, S., & Moein, M. (2016). Antidiabetic and synergistic effects study of anthocyanin fraction from Berberis integerrima fruit on streptozotocin-induced diabetic rats model. Trends in Pharmaceutical Sciences, 2(1), 43–50.

Solikhah, T. I., Rani, C., Septiani, M., Putra, Y., Rachmah, Q., Solikhah, G., … Purnama, M. (2022). Antidiabetic of Hylocereus polyrhizus peel ethanolic extract on alloxan induced diabetic mice. Iraqi J Vet Sci, 36(3), 797–802.

Zaidan, U., Ghani, N., Zahari, N., Rahim, M., & Gani, S. (2021). Biofunctional characteristics of banana peel dietary fibre (BPDF) and its associated in vitro antidiabetic properties. International Food Research Journal, 28(2), 401–406.

Zano, S., e Rubab, Z., & Baig, S. (2022). Association of FTO variant with parental history of type 2 diabetes mellitus in adults. JPMA. The Journal of the Pakistan Medical Association, 72(10), 2009–2013.