Evaluation of effectiveness of ethanol extract of green amaranth leaves (Amaranthus hybridus L.) as an immunostimulant in male white mice (Mus musculus)
Main Article Content
Page: 145-154
Abstract
The immune system plays a critical role in defending the body against pathogens, and enhancing its activity through immunostimulants is essential for improving health. This study aims to evaluate the immunostimulatory potential of ethanol extract from green amaranth leaves (Amaranthus hybridus L.) in male white mice (Mus musculus). The ethanol extract green amaranth leaves was prepared from dried green amaranth leaves and tested for its effect on phagocytic activity using the carbon clearance method. Phytochemical screening revealed the presence of flavonoids, saponins, tannins, and steroids. The animals were divided into five groups: negative control (0.5% Na CMC), positive control (Stimuno Forte®), and three experimental groups receiving varying doses of the ethanol extract (125 mg/kg, 250 mg/kg, and 500 mg/kg body weight). The results indicated that the ethanol extract significantly enhanced phagocytic activity, with the most optimal effect observed at 125 mg/kg body weight. The stimulation index increased with higher doses, demonstrating the dose-dependent immunostimulatory effect. The study concludes that the ethanol extract of green amaranth leaves can serve as an effective natural immunostimulant, with the 125 mg/kg body weight dose being the most effective in enhancing immune function in male white mice. These findings suggest the potential of green amaranth as a therapeutic agent for immune-related disorders.
Downloads
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
References
Kobayashi T, Naik S, Nagao K. Choreographing immunity in the skin epithelial barrier. *Immunity*. 2019;50(3):552–65. https://doi.org/10.1016/j.immuni.2019.02.023. DOI: https://doi.org/10.1016/j.immuni.2019.02.023
Alhazmi HA, Najmi A, Javed SA, Sultana S, Al Bratty M, Makeen HA, et al. Medicinal plants and isolated molecules demonstrating immunomodulation activity as potential alternative therapies for viral diseases including COVID-19. Front Immunol. 2021;12:637553. https://doi.org/10.3389/fimmu.2021.637553. DOI: https://doi.org/10.3389/fimmu.2021.637553
Zebeaman M, Tadesse MG, Bachheti RK, Bachheti A, Gebeyhu R, Chaubey KK. Plants and plant-derived molecules as natural immunomodulators. BioMed Res Int. 2023;2023:7711297. https://doi.org/10.1155/2023/7711297. DOI: https://doi.org/10.1155/2023/7711297
Ruth ON, Unathi K, Nomali N, Chinsamy M. Underutilization versus nutritional-nutraceutical potential of the Amaranthus food plant: A mini-review. *Appl Sci.* 2021;11(15):6879. https://doi.org/10.3390/app11156879. DOI: https://doi.org/10.3390/app11156879
Balasubramanian T, Karthikeyan M, Muhammed Anees KP, Kadeeja CP, Jaseela K. Antidiabetic and antioxidant potentials of *Amaranthus hybridus* in streptozotocin-induced diabetic rats. *J Diet Suppl*. 2017;14(4):395-410. doi: 10.1080/19390211.2016.1265037. DOI: https://doi.org/10.1080/19390211.2016.1265037
FW, Hilou A, Millogo JF, Nacoulma OG. Phytochemical Composition, Antioxidant and Xanthine Oxidase Inhibitory Activities of Amaranthus cruentus L. and Amaranthus hybridus L. Extracts. Pharmaceuticals. 2012;5(6):613-628. doi:10.3390/ph5060613. DOI: https://doi.org/10.3390/ph5060613
Albuquerque U.P., Lima T.C., Monteiro J.S., Santos F.A., Bezerra M.A., Nunes X.P., et al. Medicinal plants of the Northeast region of Brazil: a historical overview. *Revista Brasileira de Farmacognosia*. 2008;18(6):877-892. doi: 10.1590/S0074-02762008000600010. DOI: https://doi.org/10.1590/S0074-02762008000600010
Ullah A, Munir S, Badshah SL, Khan N, Ghani L, Poulson BG, Emwas AH, Jaremko M. Important flavonoids and their role as a therapeutic agent. Molecules (Basel, Switzerland). 2020;25(22):5243. doi:10.3390/molecules25225243. DOI: https://doi.org/10.3390/molecules25225243
Ahmed S, Hanif S, Iftkhar T. Phytochemical profiling with antioxidant and antimicrobial screening of Amaranthus viridis L. leaf and seed extracts. Open J Med Microbiol. 2013;3(3):164-171. doi: 10.4236/ojmm.2013.33025. DOI: https://doi.org/10.4236/ojmm.2013.33025
Awad AM, Kumar P, Ismail-Fitry MR, Jusoh S, Ab Aziz MF, Sazili AQ. Green extraction of bioactive compounds from plant biomass and their application in meat as natural antioxidant. Antioxidants (Basel, Switzerland). 2021;10(9):1465. doi:10.3390/antiox10091465. DOI: https://doi.org/10.3390/antiox10091465
Plaskova A, Mlcek J. New insights of the application of water or ethanol-water plant extract rich in active compounds in food. Front Nutr. 2023;10:1118761. doi:10.3389/fnut.2023.1118761. DOI: https://doi.org/10.3389/fnut.2023.1118761
Leyva-López N, Gutierrez-Grijalva EP, Ambriz-Perez DL, Heredia JB. Flavonoids as Cytokine Modulators: A Possible Therapy for Inflammation-Related Diseases. Int J Mol Sci. 2016;17(6):921. doi:10.3390/ijms17060921. DOI: https://doi.org/10.3390/ijms17060921
Behl T, Kumar K, Brisc C, Rus M, Nistor-Cseppento DC, Bustea C, Corb Aron RA, Pantis C, Zengin G, Sehgal A, Kaur R, Kumar A, Arora S, Setia D, Chandel D, Bungau S. Exploring the multifocal role of phytochemicals as immunomodulators. *Biomed Pharmacother*. 2021;133:110959. doi:10.1016/j.biopha.2020.110959. DOI: https://doi.org/10.1016/j.biopha.2020.110959
Masopust D, Sivula CP, Jameson SC. Of Mice, Dirty Mice, and Men: Using Mice To Understand Human Immunology. J Immunol (Baltimore, Md. : 1950). 2017;199(2):383-8. doi:10.4049/jimmunol.1700453. DOI: https://doi.org/10.4049/jimmunol.1700453
Hickman DL, Johnson J, Vemulapalli TH, Crisler JR, Shepherd R. Commonly used animal models. In: Principles of Animal Research for Graduate and Undergraduate Students. 2017. p. 117–75. https://doi.org/10.1016/B978-0-12-802151-4.00007-4. DOI: https://doi.org/10.1016/B978-0-12-802151-4.00007-4
Novitasari PR, Nuraisyah F, Prihatmadi FA, Nugroho AD, Yudhana A, Akbar SA. Solvent effects on phytochemical screening test of red lemongrass (*Cymbopogon nardus* (L.) Rendl.) extract and its potential as antidiabetic agent. *J Food Pharm Sci*. 2023;11(1):788-794. doi: 10.22146/jfps.6310. DOI: https://doi.org/10.22146/jfps.6310
Maharaj A, Naidoo Y, Dewir YH, Rihan H. Phytochemical screening, and antibacterial and antioxidant activities of *Mangifera indica* L. leaves. *Horticulturae*. 2022;8(10):909. doi: 10.3390/horticulturae8100909. DOI: https://doi.org/10.3390/horticulturae8100909
Rezza F.U, Rosidah, Yuandani. Immunomodulator Activity of Puguntano (Picria fel-terrae Lour.) Extract in White Male Mice By Carbon Clearance Method. Indones J Pharmaceut Clin Res. 2020;3(2):19-24. doi: 10.32734/idjpcr.v3i2.4306. DOI: https://doi.org/10.32734/idjpcr.v3i2.4306
Jimoh MO, Okaiyeto K, Oguntibeju OO, Laubscher CP. A systematic review on Amaranthus-related research. Horticulturae. 2022;8(3):239. doi:10.3390/horticulturae8030239. DOI: https://doi.org/10.3390/horticulturae8030239
Chen S, Wang X, Cheng Y, Gao H, Chen X. A review of classification, biosynthesis, biological activities and potential applications of flavonoids. Molecules. 2023;28(13):4982. doi:10.3390/molecules28134982. DOI: https://doi.org/10.3390/molecules28134982
Bang JH, Lee KJ, Jeong WT, Han S, Jo IH, Choi SH, Cho H, Hyun TK, Sung J, Lee J, et al. Antioxidant activity and phytochemical content of nine Amaranthus species. Agronomy. 2021;11(6):1032. doi: 10.3390/agronomy11061032. DOI: https://doi.org/10.3390/agronomy11061032
Ndukwe GI, Clark PD, Jack IR. In vitro antioxidant and antimicrobial potentials of three extracts of Amaranthus hybridus L. leaf and their phytochemicals. Eur Chem Bull. 2020;9(7):164-173. doi:10.17628/ecb.2020.9.164-173. DOI: https://doi.org/10.17628/ecb.2020.9.164-173
Wutsqa YU, Suratman S, Sari SLA. Detection of terpenoids and steroids in Lindsaea obtusa with thin layer chromatography. Asian J Nat Prod Biochem. 2021;19(2):doi:10.13057/biofar/f190204. DOI: https://doi.org/10.13057/biofar/f190204
Gordon S. Phagocytosis: An immunobiologic process. Immunity. 2016;44(3):463-75. doi:10.1016/j.immuni.2016.02.026. DOI: https://doi.org/10.1016/j.immuni.2016.02.026
Baras MH, Bin-Hameed EA. Estimating the efficiency of phagocytic neutrophil cells and studying its risk factors among diabetic foot ulcers. J Phys Conf Ser. 2021;1900(1):012006. doi:10.1088/1742-6596/1900/1/012006. DOI: https://doi.org/10.1088/1742-6596/1900/1/012006
Svadlakova T, Holmannova D, Kolackova M, Malkova A, Krejsek J, Fiala Z. Immunotoxicity of carbon-based nanomaterials, starring phagocytes. Int J Mol Sci. 2022;23(16):8889. doi:10.3390/ijms23168889. DOI: https://doi.org/10.3390/ijms23168889
Kurnijasanti R, Wardani G, Mustafa MR, Sudjarwo SA. The immunostimulatory effects of fucoidan on the cellular and humoral immune response in Wistar rats. *Open Vet J.* 2024;14(8):1794–800. doi:10.5455/OVJ.2024.v14.i8.7. DOI: https://doi.org/10.5455/OVJ.2024.v14.i8.7
Mahima, Rahal A, Deb R, Latheef SK, Abdul Samad H, Tiwari R, Verma AK, et al. Immunomodulatory and therapeutic potentials of herbal, traditional/indigenous and ethnoveterinary medicines. Pakistan J Biol Sci. 2012;15(16):754-74. doi:10.3923/pjbs.2012.754.774. DOI: https://doi.org/10.3923/pjbs.2012.754.774
Efferth T, Koch E. Complex interactions between phytochemicals. The multi-target therapeutic concept of phytotherapy. Curr Drug Targets. 2011;12(1):122-32. doi:10.2174/138945011793591626. DOI: https://doi.org/10.2174/138945011793591626
Pérez-Cano FJ, Castell M. Flavonoids, inflammation and immune system. Nutrients. 2016 Oct 21;8(10):659. doi: 10.3390/nu8100659. DOI: https://doi.org/10.3390/nu8100659
Han L, Fu Q, Deng C, Luo L, Xiang T, Zhao H. Immunomodulatory potential of flavonoids for the treatment of autoimmune diseases and tumour. Scand J Immunol. 2021;95(1):e13106. doi:10.1111/sji.13106. DOI: https://doi.org/10.1111/sji.13106