Main Article Content

Septi Ani Ritonga
Gabena Indrayani Dalimunthe
Minda Sari Lubis
Rafita Yuniarti

Page: 2017-2026

Abstract

Background: Empty Fruit Bunches (EFB) of oil palm (Elaeis guineensis Jacq.) are a significant agricultural waste from the palm oil industry, currently underutilized. EFB contains lignocellulosic components, including hemicellulose (22.84%), which has potential applications in the pharmaceutical sector as a hydrophilic polymer. Objective: This study aimed to isolate and characterize hemicellulose and nano-hemicellulose from oil palm EFB using an environmentally friendly green chemistry method with low-concentration reagents. Methods: This experimental research began with the purposive sampling of EFB. Hemicellulose was isolated using a sequential process with 0.1 N NaOH, 0.1 N HCl, and 70% ethanol. The resulting hemicellulose was then nano-sized using a ball mill technique. Characterization included organoleptic tests, solubility tests, Fourier Transform Infrared (FTIR) spectroscopy, Particle Size Analyzer (PSA), and Scanning Electron Microscope (SEM). Results: The isolation process from 500 g of EFB powder yielded 16.7 g of hemicellulose, with a yield of 3.34%. FTIR analysis identified key functional groups (O-H, C-H, C=O, C-O, C=C) in both hemicellulose and nano-hemicellulose, confirming their chemical similarity. SEM analysis at 500x magnification revealed a more regular particle structure with distinct cavities, indicating a swelling effect from the alkali treatment. PSA confirmed the nano-scale size of the processed particles. Conclusion: Hemicellulose and nano-hemicellulose were successfully isolated from oil palm EFB using a simple green chemistry method. The characterized nano-hemicellulose showed properties suitable for potential development as a carrier in pharmaceutical formulations.

Downloads

Download data is not yet available.

Article Details

How to Cite
Ritonga , S. A., Dalimunthe , G. I., Lubis , M. S., & Yuniarti, R. (2025). Isolation and Characterization of Nano Hemicellulose from Empty Palm Oil Bunches (Elaeis guineensis Jacq.). Journal of Pharmaceutical and Sciences, 8(3), 2017–2026. https://doi.org/10.36490/journal-jps.com.v8i3.1058
Section
Original Articles

References

Haryanti A, Norsamsi N, Sholiha PSF, Putri NP. Studi pemanfaatan limbah padat kelapa sawit. Konversi 2014;3:20–9. DOI: https://doi.org/10.20527/k.v3i2.161

Freynademetz FN. Produksi Bioetanol dari Selulosa Limbah Serat Kelapa Sawit dengan Variasi Jumlah Ragi dan Lama Fermentasi Ragi Tape 2024.

Kamal N. Karakterisasi dan potensi pemanfaatan limbah sawit. Tek Kim ITENAS Bandung 2012.

Anthonio M, Hastuti PB, Firmansyah E. Studi Kasus Dekomposisi Tandan Kosong Kelapa Sawit (TKKS) diantara Pokok Kelapa Sawit di Perkebunan PT. Mitranusa Permata Sungai Manunggul Estate (SMGE) Kalimantan Selatan. AGROFORETECH 2023;1:1338–49.

Amelia SR, Yerizam M, Dewi E. Analisis Karakteristik Pulp Campuran Tandan Kosong Kelapa Sawit dan Pelepah Pisang dengan Pelarut NaOH. J Pendidik Dan Teknol Indones 2021;1:389–93. https://doi.org/10.52436/1.jpti.91. DOI: https://doi.org/10.52436/1.jpti.91

Dalimunthe GI. Desain dan Formula Hemiselulosa Tongkol Jagung Sebagai Carrier untuk Target Obat di Kolon: Metronidazol Sebagai Model Obat 2020.

Muharam F, Sriwidodo. Review : Potensi Kopi Arabika (Coffea arabica L.) Dari Berbagai Aktivitas Farmakologi & Bentuk Sediaan Farmasi. Med Sains J Ilm Kefarmasian 2022;7:395–406. https://doi.org/10.37874/ms.v7i3.349. DOI: https://doi.org/10.37874/ms.v7i3.349

Sirait US, Dalimunthe GI, Lubis MS, Yuniarti R. Penentuan Konsentrasi Terbaik Hidrogel Tongkol Jagung (Zea Mays L.) dengan Karbopol 940 Menjadi Penurun Panas. J Sains Dan Kesehat 2023;5:91–8.

Dalimunthe GI, Bachri M, Harahap U, Nasution A. Formulation of capsule shell from corncob hemicellulose combined with isolated sodium alginate. Rasayan J Chem 2019;12:1668–75. DOI: https://doi.org/10.31788/RJC.2019.1235260

Syahrial S, Handayani M. Pengaruh waktu milling dengan ukuran nano serbuk daun kelor (Moringa oleifera) dan hubunganya dengan bioavailabilitas secara in-vitro dan in-vivo. AcTion Aceh Nutr J 2020;5:121. https://doi.org/10.30867/action.v5i2.213. DOI: https://doi.org/10.30867/action.v5i2.213

Sirait U safura, Dalimunthe gabena indrayani, Lubis minda sari, Yuniarti R. Jurnal Sains dan Kesehatan. J Sains Dan Kesehat 2023;5:586–92. DOI: https://doi.org/10.25026/jsk.v5iSE-1.2060

Indrainy M. Kajian pulping semimekanis dan pembuatan handmade paper berbahan dasar pelepah pisan. Skripsi) Institusi Pertan Bogor Bogor 2005;56.

Fahmi H. Micro Structure Analysis, Lignin Content and Hemicellulose Fiber from Palm Oil Due to Alkali Treatment. ReTII 2020:339–44.

Hubbe MA, Sjöstrand B, Lestelius M, Håkansson H, Swerin A, Henriksson G. Swelling of cellulosic fibers in aqueous systems: A Review of chemical and mechanistic factors. BioResources 2024;19:6859–945. DOI: https://doi.org/10.15376/biores.19.3.Hubbe

Qi X-M, Chen G-G, Gong X-D, Fu G-Q, Niu Y-S, Bian J, et al. Enhanced mechanical performance of biocompatible hemicelluloses-based hydrogel via chain extension. Sci Rep 2016;6:33603. DOI: https://doi.org/10.1038/srep33603

Kabir SMF, Sikdar PP, Haque B, Bhuiyan MAR, Ali A, Islam MN. Cellulose-based hydrogel materials: Chemistry, properties and their prospective applications. Prog Biomater 2018;7:153–74. DOI: https://doi.org/10.1007/s40204-018-0095-0

Al-Rudainy B, Galbe M, Arcos Hernandez M, Jannasch P, Wallberg O. Impact of Lignin Content on the Properties of Hemicellulose Hydrogels. Polymers (Basel) 2019;11. https://doi.org/10.3390/polym11010035. DOI: https://doi.org/10.3390/polym11010035

Most read articles by the same author(s)

1 2 3 4 5 > >>