Green synthesis nanoperak menggunakan ekstrak batang dadap serep (Erythrina Subumbrans (Hassk.) Merr)
Isi Artikel Utama
Page: 255-259
Abstrak
Batang dadap serep mengandung senyawa metabolit sekunder flavonoid, saponin, isoflavonoid, alkaloid dan lektin yang dapat berperan sebagai reduktor dalam biosintesis nanosilver. Penelitian ini bertujuan untuk mengetahui pengaruh konsentrasi ekstrak cair batang dadap serep terhadap proses green sintesis nanopartikel perak (AgNPs). Ekstrak air batang dadap serep direaksikan dengan 1 mM AgNO3 dengan perbandingan volume 1:1 (FI), 1:2 (FII), dan 2:1 (FIII). Karakterisasi AgNPs meliputi surface plasmon resonance (SPR) menggunakan spektrofotometer UV/Vis pada panjang gelombang 300-700 nm, ukuran partikel, dan potensial zeta menggunakan Particle Size Analyzer (PSA). Hasil penelitian menunjukkan nilai SPR AgNPs adalah 429-436 nm, sedangkan ukuran partikel AgNPs FI, II, dan III adalah 66,13 nm, 75,76 nm, dan 75,96 nm. Nilai PDI di bawah 0,5 menunjukkan bahwa distribusi nanopartikel seragam. Nanopartikel paling stabil terdapat pada formula I.
Unduhan
Rincian Artikel
Artikel ini berlisensiCreative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Referensi
Arvizo, R. R., Miranda, O. R., Thompson, M. A., Pabelick, C. M., Bhattacharya, R., Robertson, J. D., … Mukherjee, P. (2010). Effect of nanoparticle surface charge at the plasma membrane and beyond. Nano Letters, 10(7), 2543–2548. https://doi.org/10.1021/nl101140t
Beyene, H. D., Werkneh, A. A., Bezabh, H. K., & Ambaye, T. G. (2017). Synthesis paradigm and applications of silver nanoparticles (AgNPs), a review. Sustainable Materials and Technologies, 13, 18–23. https://doi.org/10.1016/j.susmat.2017.08.001
Blanco, J., Lafuente, D., Gómez, M., García, T., Domingo, J. L., & Sánchez, D. J. (2017). Polyvinyl pyrrolidone-coated silver nanoparticles in a human lung cancer cells: Time- and dose-dependent influence over p53 and caspase-3 protein expression and epigenetic effects. Archives of Toxicology, 91(2), 651–666. https://doi.org/10.1007/s00204-016-1773-0
Danaei, M., Dehghankhold, M., Ataei, S., Hasanzadeh Davarani, F., Javanmard, R., Dokhani, A., … Mozafari, M. (2018). Impact of Particle Size and Polydispersity Index on the Clinical Applications of Lipidic Nanocarrier Systems. Pharmaceutics, 10(2), 57. https://doi.org/10.3390/pharmaceutics10020057
Islam, M. A., Jacob, M. V., & Antunes, E. (2021). A critical review on silver nanoparticles: From synthesis and applications to its mitigation through low-cost adsorption by biochar. Journal of Environmental Management, 281, 111918. https://doi.org/10.1016/j.jenvman.2020.111918
Lara, H. H., Garza-Treviño, E. N., Ixtepan-Turrent, L., & Singh, D. K. (2011). Silver nanoparticles are broad-spectrum bactericidal and virucidal compounds. Journal of Nanobiotechnology, 9(1), 30. https://doi.org/10.1186/1477-3155-9-30
Lara, H. H., Ixtepan-Turrent, L., Garza-Treviño, E. N., & Rodriguez-Padilla, C. (2010). PVP-coated silver nanoparticles block the transmission of cell-free and cell-associated HIV-1 in human cervical culture. Journal of Nanobiotechnology, 8(1), 15. https://doi.org/10.1186/1477-3155-8-15
Pertiwi, R. D., Suwaldi, Setyowati, E. P., & Martien, R. (2019). Bio-Nanoparticles: Green Synthesis Of Gold Nanoparticles And Assessment Of Biological Evaluation. International Journal of Applied Pharmaceutics, 133–138. https://doi.org/10.22159/ijap.2019v11i6.34826
Rukachaisirikul, T., Innok, P., Aroonrerk, N., Boonamnuaylap, W., Limrangsun, S., Boonyon, C., … Suksamrarn, A. (2007). Antibacterial Pterocarpans from Erythrina subumbrans. Journal of Ethnopharmacology, 110(1), 171–175. https://doi.org/10.1016/j.jep.2006.09.022
Siddiqi, K. S., Husen, A., & Rao, R. A. K. (2018). A review on biosynthesis of silver nanoparticles and their biocidal properties. Journal of Nanobiotechnology, 16, 14. https://doi.org/10.1186/s12951-018-0334-5