Main Article Content

Vina Andriani
Novitaria Br Sembiring
Roy Indrianto Bangar

Page: 1286-1293

Abstract

Background: The increasing use of traditional herbal medicine (jamu) for diabetes treatment in the community has been accompanied by a rise in counterfeiting practices, particularly through the addition of synthetic drugs such as glibenclamide (C₂₃H₂₈ClN₃O₅S) to enhance efficacy and sales. This poses potential health risks, thereby necessitating strict monitoring of circulating herbal products. Objective: This study aims to identify the presence of glibenclamide in three samples of antidiabetic jamu available in Medan Johor using Fourier-Transform Infrared Spectroscopy (FTIR). Method: Identification was carried out by comparing the FTIR spectra of the samples (wavenumber range 650–4000 cm⁻¹) with that of the BPFI glibenclamide standard. The characteristic functional groups of glibenclamide used as reference were 3369.5 cm⁻¹ (Amide N–H Stretching), 1714.6 cm⁻¹ (C=O Stretching), and 1155.5 cm⁻¹ (S=O Stretching). Results: The analysis showed that none of the three samples (A2, A3, A4) exhibited absorption peaks corresponding to the critical wavenumbers of glibenclamide. Therefore, the tested samples were declared free from the pharmaceutical chemical substance (PCS) glibenclamide. Conclusion: These findings indicate that the three jamu products are safe for consumption when used as directed. However, routine surveillance by the National Agency of Drug and Food Control (BPOM) remains essential to ensure the safety of herbal products on the market. Further studies using more sensitive methods such as UV-Vis spectrophotometry are recommended to verify these results.

Downloads

Download data is not yet available.

Article Details

How to Cite
Andriani, V., Sembiring , N. B., & Bangar, R. I. (2025). Identification of Glibenclamide in Diabetic Herbs Circulating in Medan Johor. Journal of Pharmaceutical and Sciences, 8(2), 1286–1293. https://doi.org/10.36490/journal-jps.com.v8i2.889
Section
Original Articles

References

Mulkin A, Maarisit W, Pareta D, Palandi R. Identifikasi Bahan Kimia Obat (BKO) Glibenklamid Pada Jamu Antidiabetes Dengan Menggunakan Metode Kromatografi Lapis Tipis (KLT) Dan Spektrofotodensitometri. Jurnal Biofarmasetikal Tropis n.d.;2020:48–53. DOI: https://doi.org/10.55724/j.biofar.trop.v3i2.284

Budi A, Harahap H, Amansyah A, Tarigan S. Detection of glibenclamide adulteration in herbal remedies for diabetes mellitus using TLC. Buletin Kedokteran Dan Kesehatan Prima 2024;3. https://doi.org/10.34012/bkkp.v3i1.5287.

Carden A, Yost MG, Fenske RA. Noninvasive Method for the Assessment of Dermal Uptake of Pesticides Using Attenuated Total Reflectance Infrared Spectroscopy. Applied Spectroscopy 2005;59:293–9. https://doi.org/10.1366/0003702053585372. DOI: https://doi.org/10.1366/0003702053585372

Bhongade BA, Talath S, Dhaneshwar SR. A Validated Method for the Quantitation of Ciprofloxacin Hydrochloride Using Diffuse Reflectance Infrared Fourier Transform Spectroscopy. International Journal of Spectroscopy 2014;2014:1–6. https://doi.org/10.1155/2014/294612. DOI: https://doi.org/10.1155/2014/294612

Natalello A, Sasso F, Secundo F. Enzymatic Transesterification Monitored by an Easy‐to‐use Fourier Transform Infrared Spectroscopy Method. Biotechnology Journal 2012;8:133–8. https://doi.org/10.1002/biot.201200173. DOI: https://doi.org/10.1002/biot.201200173

Roggo Y, Roeseler C, Ulmschneider M. Near Infrared Spectroscopy for Qualitative Comparison of Pharmaceutical Batches. Journal of Pharmaceutical and Biomedical Analysis 2004;36:777–86. https://doi.org/10.1016/j.jpba.2004.08.009. DOI: https://doi.org/10.1016/j.jpba.2004.08.009

Zeng Z, Chau F, Chan H-Y, Cheung C, Lau T-Y, Wei S, et al. Recent Advances in the Compound-Oriented and Pattern-Oriented Approaches to the Quality Control of Herbal Medicines. Chinese Medicine 2008;3. https://doi.org/10.1186/1749-8546-3-9. DOI: https://doi.org/10.1186/1749-8546-3-9

Lin Y-P, Lee Y-L, Hung C-Y, Chang C, Chen Y. Detection of Adulterated Drugs in Traditional Chinese Medicine and Dietary Supplements Using Hydrogen as a Carrier Gas. Plos One 2018;13:e0205371. https://doi.org/10.1371/journal.pone.0205371. DOI: https://doi.org/10.1371/journal.pone.0205371

Rodriguez‐Saona LE, Allendorf ME. Use of FTIR for Rapid Authentication and Detection of Adulteration of Food. Annual Review of Food Science and Technology 2011;2:467–83. https://doi.org/10.1146/annurev-food-022510-133750. DOI: https://doi.org/10.1146/annurev-food-022510-133750

Rohman A, Ikhtiarini AN, Setyaningsih W, Rafi M, Aminah NS, Insanu M, et al. The Use of Chemometrics for Classification of Sidaguri (Sida Rhombifolia) Based on FTIR Spectra and Antiradical Activities. Indonesian Journal of Chemistry 2021;21:1568. https://doi.org/10.22146/ijc.64360. DOI: https://doi.org/10.22146/ijc.64360

Pavia DL, Lampman GM, Kriz GS, Vyvyan JR. Introduction to Spectroscopy, BROOKS/COLE Cengage Learning. United State of America 2009:670–95.

Depkes RI. Farmakope Indonesia Edisi V, Jakarta : Departermen Kesehatan Republik Indonesia.,. Jakarta: 2014.

Husain F, Ysrafil Y, DAUD RPA, Aisyah AN, Fadri A, Nur S. Authentication of Medicinal Chemicals in Traditional Herbal Products (Jamu) by UV-Vis Spectrophotometry. Hacettepe University Journal of the Faculty of Pharmacy 2023. https://doi.org/10.52794/hujpharm.1090673. DOI: https://doi.org/10.52794/hujpharm.1090673

Zupan N, Yous I, Danède F, Vérin J, Kouach M, Foulon C, et al. Impact of Hot-Melt Extrusion on Glibenclamide’s Physical and Chemical States and Dissolution Behavior: Case Studies With Three Polymer Blend Matrices. Pharmaceutics 2024;16:1071. https://doi.org/10.3390/pharmaceutics16081071. DOI: https://doi.org/10.3390/pharmaceutics16081071

Rodà F, Picciolini S, Mangolini V, Gualerzi A, Seneci P, Renda A, et al. Raman Spectroscopy Characterization of Multi-Functionalized Liposomes as Drug-Delivery Systems for Neurological Disorders. Nanomaterials 2023;13:699. https://doi.org/10.3390/nano13040699. DOI: https://doi.org/10.3390/nano13040699

Budiman A, Sopyan I, Riyandi DS. Enhancement of Glibenclamide Dissolution Rate by Solid Dispersion Method Using HPMC and PVP. International Journal of Applied Pharmaceutics 2019:19–24. https://doi.org/10.22159/ijap.2019v11i5.34137. DOI: https://doi.org/10.22159/ijap.2019v11i5.34137

Owolabi M. Effect of Ethanol Root Extract of Calliandra Portoricensis on the Pharmacokinetic Fate of Glibenclamide in Rats. Nigerian Journal of Pharmacy 2022;56. https://doi.org/10.51412/psnnjp.2022.37. DOI: https://doi.org/10.51412/psnnjp.2022.37

Nwogu AO, Tamuno-Emine DG, Ben-Chioma AE, Bartimaeus E-AS. Evaluation of the Phytochemical Composition of Some Commonly Sold Male Herbal Fertility Supplements in Port Harcourt, Rivers State, Nigeria. Asian Journal of Medicine and Health 2023;21:177–84. https://doi.org/10.9734/ajmah/2023/v21i10891. DOI: https://doi.org/10.9734/ajmah/2023/v21i10891

Wongsa P, Phatikulrungsun P, Prathumthong S. FT-IR Characteristics, Phenolic Profiles and Inhibitory Potential Against Digestive Enzymes of 25 Herbal Infusions. Scientific Reports 2022;12. https://doi.org/10.1038/s41598-022-10669-z. DOI: https://doi.org/10.1038/s41598-022-10669-z

Tipduangta P, Julsrigival J, Chaithatwatthana K, Pongterdsak N, Tipduangta P, Chansakaow S. Antioxidant Properties of Thai Traditional Herbal Teas. Beverages 2019;5:44. https://doi.org/10.3390/beverages5030044. DOI: https://doi.org/10.3390/beverages5030044

Rama P, Baldelli A, Vignesh A, Altemimi AB, Lakshmanan G, Selvam R, et al. Antimicrobial, Antioxidant, and Angiogenic Bioactive Silver Nanoparticles Produced Using Murraya Paniculata (L.) Jack Leaves. Nanomaterials and Nanotechnology 2022;12:184798042110561. https://doi.org/10.1177/18479804211056167. DOI: https://doi.org/10.1177/18479804211056167

Monton C, Wunnakup T, Suksaeree J, Charoenchai L, Chankana N. Investigation of the Interaction of Herbal Ingredients Contained in Triphala Recipe Using Simplex Lattice Design: Chemical Analysis Point of View. International Journal of Food Science 2020;2020:1–14. https://doi.org/10.1155/2020/5104624. DOI: https://doi.org/10.1155/2020/5104624

Fatmarahmi DC, Susidarti RA, Swasono RT, Rohman A. Application of Ftir-Atr Spectroscopy in Combination With Multivariate Analysis to Analyse Synthetic Drugs Adulterant in Ternary Mixtures of Herbal Medicine Products. Indonesian Journal of Pharmacy 2022:42–71. https://doi.org/10.22146/ijp.2609. DOI: https://doi.org/10.22146/ijp.2609

Baraúna VG, Singh MN, Barbosa LL, Marcarini WD, Vassallo PF, Mill JG, et al. Ultrarapid on-Site Detection of SARS-CoV-2 Infection Using Simple ATR-FTIR Spectroscopy and an Analysis Algorithm: High Sensitivity and Specificity. Analytical Chemistry 2021;93:2950–8. https://doi.org/10.1021/acs.analchem.0c04608. DOI: https://doi.org/10.1021/acs.analchem.0c04608

Yuliantini A, Salafiah F, Asnawi A. Rapid Detection of Ashitaba (Angelica Keiskei) Herbal Medicine Adulteration Using FTIR and Principal Component Analysis Method. Rasayan Journal of Chemistry 2020;13:535–40. https://doi.org/10.31788/rjc.2020.1315557. DOI: https://doi.org/10.31788/RJC.2020.1315557

Cheng X, Qi L, Wang Q, Liu X, Boubertakh B, Wan J, et al. Highly Efficient Sample Preparation and Quantification of Constituents From Traditional Chinese Herbal Medicines Using Matrix Solid-Phase Dispersion Extraction and UPLC-MS/MS. The Analyst 2013;138:2279. https://doi.org/10.1039/c3an36732k. DOI: https://doi.org/10.1039/c3an36732k

Ahamad J, Omer AY, Majid DA, Khidr TM, Jameel SY. Chemical Characterization and Detection of Adulteration in Olea Europaea Linn. Oil by ATR-FTIR Method. Eurasian Journal of Science and Engineering 2022;8. https://doi.org/10.23918/eajse.v8i3p158. DOI: https://doi.org/10.23918/eajse.v8i3p158