In Vivo Evaluation of the Biocompatibility of Natural Hydrocolloid Hydrogel Implants for Biomedical Applications
Main Article Content
Page: 679-693
Abstract
Hydrogels are promising biomaterials for biomedical applications due to their high biocompatibility, three-dimensional structure resembling biological tissue, and their ability to gradually degrade within the body. Notably, hydrocolloid hydrogels based on natural polymers, such as porang-sago glucomannan, demonstrate significant potential for applications like drug delivery systems and tissue engineering. The biocompatibility of these materials is crucial to ensure they are well accepted by body tissues without causing adverse reactions. Therefore, this study aims to evaluate the in vivo biocompatibility of hydrocolloid hydrogel implants made from crosslinked porang-sago glucomannan using citric acid, with a focus on biomedical applications. The method used in this study involved the implantation of hydrogel implants in male mice weighing approximately 25 grams, divided into four groups: three groups with different hydrogel implant formulations and one control group without implants. After 10–20 days post-implantation, the tissue surrounding the implant was evaluated through histopathological analysis using Hematoxylin-Eosin (H&E) staining. The results showed that the hydrogel implants exhibited good biocompatibility, with a mild inflammatory response predominantly characterized by macrophages and moderate fibrotic capsule formation. No pathological signs such as necrosis or granulomas were observed in the tissue surrounding the implant. Formulations F1 and F5 demonstrated better biocompatibility profiles compared to F3, showing lower inflammatory responses. In conclusion, hydrocolloid hydrogel implants based on porang-sago glucomannan exhibit good biocompatibility potential for subcutaneous and skeletal muscle applications. However, further optimization is required to improve tissue integration and minimize the gap between the implant and surrounding tissue. This study provides a foundation for the further development of hydrocolloid hydrogels as biomaterials for biomedical applications, such as drug delivery systems and tissue engineering.
Downloads
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
References
Buwalda SJ, Vermonden T, Hennink WE. Hydrogels for therapeutic delivery: current developments and future directions. Biomacromolecules 2017;18:316–30. DOI: https://doi.org/10.1021/acs.biomac.6b01604
Chai Q, Jiao Y, Yu X. Hydrogels for biomedical applications: their characteristics and the mechanisms behind them. Gels 2017;3:6. DOI: https://doi.org/10.3390/gels3010006
Ho T-C, Chang C-C, Chan H-P, Chung T-W, Shu C-W, Chuang K-P, et al. Hydrogels: properties and applications in biomedicine. Molecules 2022;27:2902. DOI: https://doi.org/10.3390/molecules27092902
Kim D, Park K. Swelling and mechanical properties of superporous hydrogels of poly (acrylamide-co-acrylic acid)/polyethylenimine interpenetrating polymer networks. Polymer (Guildf) 2004;45:189–96. DOI: https://doi.org/10.1016/j.polymer.2003.10.047
Hoare TR, Kohane DS. Hydrogels in drug delivery: Progress and challenges. Polymer (Guildf) 2008;49:1993–2007. https://doi.org/10.1016/j.polymer.2008.01.027. DOI: https://doi.org/10.1016/j.polymer.2008.01.027
Sulastri E, Lesmana R, Zubair MS, Elamin KM, Wathoni N. A comprehensive review on ulvan based hydrogel and its biomedical applications. Chem Pharm Bull 2021;69:432–43. DOI: https://doi.org/10.1248/cpb.c20-00763
Li Z, He C, Yuan B, Dong X, Chen X. Injectable Polysaccharide Hydrogels as Biocompatible Platforms for Localized and Sustained Delivery of Antibiotics for Preventing Local Infections. Macromol Biosci 2016;17. https://doi.org/10.1002/mabi.201600347. DOI: https://doi.org/10.1002/mabi.201600347
Salman, Wahyuni FS, Suardi M, Djamaan A. Synthesis and physicochemical characterization of sago starch-porang glucomannan hydrogels crosslinked fumaric acid as a new material for drug delivery system. IOP Conf Ser Earth Environ Sci 2024;1356:12078. https://doi.org/10.1088/1755-1315/1356/1/012078. DOI: https://doi.org/10.1088/1755-1315/1356/1/012078
Constant C, Moriarty TF, Arens D, Pugliese B, Zeiter S. Peri‐anesthetic Hypothermia in Rodents: A Factor to Consider for Accurate and Reproducible Outcomes in Orthopedic Device‐related Infection Studies. J Orthop Res 2022;41:619–28. https://doi.org/10.1002/jor.25397. DOI: https://doi.org/10.1002/jor.25397
Brás LE de C, Proffitt J, Bloor S, Sibbons P. Effect of Crosslinking on the Performance of a Collagen‐derived Biomaterial as an Implant for Soft Tissue Repair: A Rodent Model. J Biomed Mater Res Part B Appl Biomater 2010;95B:239–49. https://doi.org/10.1002/jbm.b.31704. DOI: https://doi.org/10.1002/jbm.b.31704
Fereidouni F, Todd A, Li Y, Chang C-W, Luong K, Rosenberg AZ, et al. Dual-Mode Emission and Transmission Microscopy for Virtual Histochemistry Using Hematoxylin- And Eosin-Stained Tissue Sections. Biomed Opt Express 2019;10:6516. https://doi.org/10.1364/boe.10.006516. DOI: https://doi.org/10.1364/BOE.10.006516
Pham TTA, Kim H, Lee Y, Kang HW, Park S. Deep Learning for Analysis of Collagen Fiber Organization in Scar Tissue. Ieee Access 2021;9:101755–64. https://doi.org/10.1109/access.2021.3097370. DOI: https://doi.org/10.1109/ACCESS.2021.3097370
Laurino A, Franceschini A, Pesce L, Cinci L, Montalbano A, Mazzamuto G, et al. A Guide to Perform 3D Histology of Biological Tissues With Fluorescence Microscopy. Int J Mol Sci 2023;24:6747. https://doi.org/10.3390/ijms24076747. DOI: https://doi.org/10.3390/ijms24076747
Cohen‐Rosenblum A, Volaric AK, Browne JA. Retrieval Analysis of a Failed Synthetic Mesh Extensor Mechanism Reconstruction After Total Knee Arthroplasty. Arthroplast Today 2018;4:447–51. https://doi.org/10.1016/j.artd.2018.07.009. DOI: https://doi.org/10.1016/j.artd.2018.07.009
L. SM, L. SG, C. OCL, Flores-Lopes F. Evaluation of the Environmental Monitoring of the Cachoeira River Through Histopathological Alterations of Astyanax Fasciatus. Int J Zool Investig 2019;06:174–86. https://doi.org/10.33745/ijzi.2020.v06i01.014. DOI: https://doi.org/10.33745/ijzi.2020.v06i01.014
Correa‐Aravena J, Vásquez B, Otzen T, Manterola C, Ottone NE. Histological Techniques for the Study of the Dentogingival Junction: A Scoping Review Using the Anatomical Quality Assurance Checklist (AQUA). Int J Morphol 2023;41:926–36. https://doi.org/10.4067/s0717-95022023000300926. DOI: https://doi.org/10.4067/S0717-95022023000300926
Naahidi S, Jafari M, Logan M, Wang Y, Yuan Y, Bae H, et al. Biocompatibility of hydrogel-based scaffolds for tissue engineering applications. Biotechnol Adv 2017;35:530–44. DOI: https://doi.org/10.1016/j.biotechadv.2017.05.006
Ikada Y. Biocompatibility of hydrogels. Gels Handb., Elsevier; 2001, p. 388–407. DOI: https://doi.org/10.1016/B978-012394690-4/50094-3
Anderson JM, Rodriguez A, Chang DT. Foreign body reaction to biomaterials. Semin. Immunol., vol. 20, Elsevier; 2008, p. 86–100. DOI: https://doi.org/10.1016/j.smim.2007.11.004
Sheikh Z, Brooks PJ, Barzilay O, Fine N, Glogauer M. Macrophages, Foreign Body Giant Cells and Their Response to Implantable Biomaterials. Materials (Basel) 2015;8:5671–701. https://doi.org/10.3390/ma8095269. DOI: https://doi.org/10.3390/ma8095269
Flores F, Anita R. Synthesis of biocompatible hydrogel of alginate-chitosan enriched with iron sulfide nanocrystals. SLAS Technology, 100158 2024.
Wang Y-K, Ma L, Wang Z-Q, Wang Y, Li P, Jiang B, et al. Clinicopathological features and differential diagnosis of gastric pleomorphic giant cell carcinoma. Open Life Sci 2023;18:20220683. DOI: https://doi.org/10.1515/biol-2022-0683
Williams DF. On the mechanisms of biocompatibility. Biomaterials 2008;29:2941–53. DOI: https://doi.org/10.1016/j.biomaterials.2008.04.023
Flores AVE, Anita REN, Arrocena MCA, Duran FP, Rico FC, Santos-Cruz J, et al. Synthesis of biocompatible hydrogel of alginate-chitosan enriched with iron sulfide nanocrystals. SLAS Technol 2024:100158. DOI: https://doi.org/10.1016/j.slast.2024.100158
Listyarifah D. Kompatibilitas bahan implan tulang hidroksiapatit dan karbonat hidroksiapatit di jaringan lunak. (Clinical Dent Journal) UGM 2023. DOI: https://doi.org/10.22146/mkgk.83547
Masir O, Manjas M, Eka Putra A, Agus S. Pengaruh Cairan Cultur Filtrate Fibroblast (CFF) Terhadap Penyembuhan Luka; Penelitian eksperimental pada Rattus Norvegicus Galur Wistar. J Kesehat Andalas 2012;1:112–7. https://doi.org/10.25077/jka.v1i3.78. DOI: https://doi.org/10.25077/jka.v1i3.78
Kwee BJ, Mooney DJ. Biomaterials for skeletal muscle tissue engineering. Curr Opin Biotechnol 2017;47:16–22. DOI: https://doi.org/10.1016/j.copbio.2017.05.003
Qazi TH, Mooney DJ, Pumberger M, Geissler S, Duda GN. Biomaterials based strategies for skeletal muscle tissue engineering: existing technologies and future trends. Biomaterials 2015;53:502–21. DOI: https://doi.org/10.1016/j.biomaterials.2015.02.110
Cezar CA, Mooney DJ. Biomaterial-based delivery for skeletal muscle repair. Adv Drug Deliv Rev 2015;84:188–97. DOI: https://doi.org/10.1016/j.addr.2014.09.008
Kim JH, Seol Y-J, Ko IK, Kang H-W, Lee YK, Yoo JJ, et al. 3D Bioprinted Human Skeletal Muscle Constructs for Muscle Function Restoration. Sci Rep 2018;8. https://doi.org/10.1038/s41598-018-29968-5. DOI: https://doi.org/10.1038/s41598-018-29968-5
Iliescu AA, Petcu C, Petcu IC, Gheorghiu I-M, Stan MG, Zurac S. Tissue Reaction to Subcutaneous Implantation of SuperEBA (Reinforced Zinc Oxide Cement) Used as Root-End Filling Material: A Histological Study in Rats. Key Eng Mater 2016;695:247–51. https://doi.org/10.4028/www.scientific.net/kem.695.247. DOI: https://doi.org/10.4028/www.scientific.net/KEM.695.247
Pucinelli CM, Silva RAB da, Borges LL, Borges AT do N, Nelson‐Filho P, Consolaro A, et al. Tissue Response After Subcutaneous Implantation of Different Glass Ionomer-Based Cements. Braz Dent J 2019;30:599–606. https://doi.org/10.1590/0103-6440201902619. DOI: https://doi.org/10.1590/0103-6440201902619
Modulevsky DJ, Cuerrier CM, Pelling AE. Biocompatibility of Subcutaneously Implanted Plant-Derived Cellulose Biomaterials. PLoS One 2016;11:e0157894. https://doi.org/10.1371/journal.pone.0157894. DOI: https://doi.org/10.1371/journal.pone.0157894
Sydlik SA, Jhunjhunwala S, Webber MJ, Anderson DG, Langer R. In Vivo Compatibility of Graphene Oxide With Differing Oxidation States. ACS Nano 2015;9:3866–74. https://doi.org/10.1021/acsnano.5b01290. DOI: https://doi.org/10.1021/acsnano.5b01290
Braile-Sternieri MCVB, Góissis G, Giglioti A de F, Ramirez VDA, Pereira NP, Vasconcellos A de, et al. In Vivo Evaluation of Vivere Bovine Pericardium Valvular Bioprosthesis With a New Anti‐calcifying Treatment. Artif Organs 2020;44. https://doi.org/10.1111/aor.13718. DOI: https://doi.org/10.1111/aor.13718
Hinata G, Yoshiba K, Han L, Edanami N, Yoshiba N, Okiji T. Bioactivity and Biomineralization Ability of Calcium Silicate‐based Pulp‐capping Materials After Subcutaneous Implantation. Int Endod J 2017;50. https://doi.org/10.1111/iej.12802. DOI: https://doi.org/10.1111/iej.12802
Andrade AS, Silva GF, Camilleri J, Cerri ES, Guerreiro‐Tanomaru JM, Cerri PS, et al. Tissue Response and Immunoexpression of Interleukin 6 Promoted by Tricalcium Silicate–based Repair Materials After Subcutaneous Implantation in Rats. J Endod 2018;44:458–63. https://doi.org/10.1016/j.joen.2017.12.006. DOI: https://doi.org/10.1016/j.joen.2017.12.006
Bilge K, Ataş O, Yıldız Ş, Çalık İ, Dündar S, ATAŞ AG. Histological Evaluation of Tissue Reaction and New Bone Formation of Different Calcium Silicate‐based Cements in Rats. Aust Dent J 2023;69:18–28. https://doi.org/10.1111/adj.12980. DOI: https://doi.org/10.1111/adj.12980
Porzionato A, Sfriso MM, Pontini A, Macchi V, Petrelli L, Pavan PG, et al. Decellularized Human Skeletal Muscle as Biologic Scaffold for Reconstructive Surgery. Int J Mol Sci 2015;16:14808–31. https://doi.org/10.3390/ijms160714808. DOI: https://doi.org/10.3390/ijms160714808
Rollim VM, Reginato GM, Fernandes LM, Arantes J de A, Rigo EC da S, Vercik LCO, et al. Behaviour of Diferent Types of Chitosan Membranes Implanted in Horses. Pesqui Veterinária Bras 2019;39:837–42. https://doi.org/10.1590/1678-6160-pvb-6314. DOI: https://doi.org/10.1590/1678-6160-pvb-6314
Czajka C, Calder BW, Yost MJ, Drake CJ. Implanted Scaffold-Free Prevascularized Constructs Promote Tissue Repair. Ann Plast Surg 2015;74:371–5. https://doi.org/10.1097/sap.0000000000000439. DOI: https://doi.org/10.1097/SAP.0000000000000439
Haase T, Krost A, Sauter T, Kratz K, Peter J, Kamann S, et al. In Vivo biocompatibility Assessment of Poly (Ether Imide) Electrospun Scaffolds. J Tissue Eng Regen Med 2015;11:1034–44. https://doi.org/10.1002/term.2002. DOI: https://doi.org/10.1002/term.2002
Ma W, Lyu H, Pandya M, Gopinathan G, Luan X, Diekwisch TGH. Successful Application of a Galanin-Coated Scaffold for Periodontal Regeneration. J Dent Res 2021;100:1144–52. https://doi.org/10.1177/00220345211028852. DOI: https://doi.org/10.1177/00220345211028852