Main Article Content

Indri Maharini
Diah Tri Utami


Dadap serep stems contain secondary metabolite compounds of flavonoids, saponins, isoflavonoids, alkaloids and lectins which can act as reducing agents in the biosynthesis of nanosilver. This research aims to determine the effect of the concentration of liquid extract of dadap serep stem on the green synthesis silver nanoparticle (AgNPs) process. The aqueous extract of dadap serep stem reacted with one mM AgNO3 in a ratio of volume 1: 1 (FI), 1: 2 (FII), and 2: 1 (FIII). Characterization of AgNPs includes Surface Plasmon resonance (SPR) using UV/Vis spectrophotometer at wavelengths of 300-700 nm, particle size, and zeta potential using a particle size analyzer (PSA). The result showed that the SPR of AgNP values is 429-436 nm. AgNPs FI, II, and III particle sizes were 66.13 nm, 75.76 nm, and 75.96 nm, respectively. The PDI values below 0.5 confirmed that the distribution of nanoparticles was uniform. The most stable nanoparticle is  Formula I.


Download data is not yet available.

Article Details

How to Cite
Maharini, I., Fitrianingsih, F., & Utami, D. T. (2023). Green synthesis nanosilver using dadap serep (Erythrina Subumbrans (Hassk.) Merr) stem extract. Journal of Pharmaceutical and Sciences, 6(5-si), 255–259.
Original Articles


Arvizo, R. R., Miranda, O. R., Thompson, M. A., Pabelick, C. M., Bhattacharya, R., Robertson, J. D., … Mukherjee, P. (2010). Effect of nanoparticle surface charge at the plasma membrane and beyond. Nano Letters, 10(7), 2543–2548.

Beyene, H. D., Werkneh, A. A., Bezabh, H. K., & Ambaye, T. G. (2017). Synthesis paradigm and applications of silver nanoparticles (AgNPs), a review. Sustainable Materials and Technologies, 13, 18–23.

Blanco, J., Lafuente, D., Gómez, M., García, T., Domingo, J. L., & Sánchez, D. J. (2017). Polyvinyl pyrrolidone-coated silver nanoparticles in a human lung cancer cells: Time- and dose-dependent influence over p53 and caspase-3 protein expression and epigenetic effects. Archives of Toxicology, 91(2), 651–666.

Danaei, M., Dehghankhold, M., Ataei, S., Hasanzadeh Davarani, F., Javanmard, R., Dokhani, A., … Mozafari, M. (2018). Impact of Particle Size and Polydispersity Index on the Clinical Applications of Lipidic Nanocarrier Systems. Pharmaceutics, 10(2), 57.

Islam, M. A., Jacob, M. V., & Antunes, E. (2021). A critical review on silver nanoparticles: From synthesis and applications to its mitigation through low-cost adsorption by biochar. Journal of Environmental Management, 281, 111918.

Lara, H. H., Garza-Treviño, E. N., Ixtepan-Turrent, L., & Singh, D. K. (2011). Silver nanoparticles are broad-spectrum bactericidal and virucidal compounds. Journal of Nanobiotechnology, 9(1), 30.

Lara, H. H., Ixtepan-Turrent, L., Garza-Treviño, E. N., & Rodriguez-Padilla, C. (2010). PVP-coated silver nanoparticles block the transmission of cell-free and cell-associated HIV-1 in human cervical culture. Journal of Nanobiotechnology, 8(1), 15.

Pertiwi, R. D., Suwaldi, Setyowati, E. P., & Martien, R. (2019). Bio-Nanoparticles: Green Synthesis Of Gold Nanoparticles And Assessment Of Biological Evaluation. International Journal of Applied Pharmaceutics, 133–138.

Rukachaisirikul, T., Innok, P., Aroonrerk, N., Boonamnuaylap, W., Limrangsun, S., Boonyon, C., … Suksamrarn, A. (2007). Antibacterial Pterocarpans from Erythrina subumbrans. Journal of Ethnopharmacology, 110(1), 171–175.

Siddiqi, K. S., Husen, A., & Rao, R. A. K. (2018). A review on biosynthesis of silver nanoparticles and their biocidal properties. Journal of Nanobiotechnology, 16, 14.