Main Article Content

Anisa Sabila
Yayuk Putri Rahayu
Haris Munandar Nasution
Rafita Yuniarti

Page: 2749-2759

Abstract

Background: Fungal skin infections such as pityriasis versicolor caused by Malassezia furfur remain a common health problem in tropical regions. Limitations of conventional antifungal therapy have encouraged the development of alternative agents derived from natural products. Golden trumpet leaves (Allamanda cathartica L.) contain flavonoids and iridoids with potential antifungal activity, and nanoparticle formulations are being developed to enhance the extracts’ effectiveness. Objective: To evaluate the improvement of antifungal efficacy of the nanoparticle formulation of the ethanolic extract of golden trumpet leaves against Malassezia furfur by comparing the Minimum Inhibitory Concentration (MIC), Minimum Fungicidal Concentration (MFC), and inhibition zone diameter with the conventional extract. Methods: This experimental study employed a posttest-only control group design. Treatment groups included ethanolic extract (6.25%, 12.5%, 25%, 50%) and nanoparticle extract (0.625%, 1.25%, 2.5%, 5%). Nanoparticles were prepared using a high-pressure homogenizer and characterized with a Particle Size Analyzer (PSA). MIC and MFC were determined using the broth dilution method, while antifungal activity was assessed using the disc diffusion method. Data were analyzed using one-way ANOVA at a 95% confidence level. Results: Nanoparticle characterization revealed a particle size of 367.51 nm. The MIC values for the extract and nanoparticles were 12.5% and 1.25%, respectively, while the MFC values were 50% and 5%, respectively. The highest inhibition zones for the extract and nanoparticles were 21.1 mm (50%) and 20.3 mm (5%), respectively. Statistical analysis showed significant differences (p < 0.05) in inhibition zone diameters across concentrations for both extract forms. Conclusion: The nanoparticle formulation of the ethanolic extract of golden trumpet leaves significantly enhances antifungal activity against Malassezia furfur, demonstrating equivalent inhibitory effects at concentrations ten times lower than the conventional extract. These findings indicate the potential of nanoparticle-based formulations as promising antifungal candidates.

Downloads

Download data is not yet available.

Article Details

How to Cite
Sabila , A., Rahayu , Y. P., Nasution , H. M., & Yuniarti , R. (2025). Minimum Inhibitory Concentration and Minimum Fungicidal Concentration of Extract and Nanoparticles of Ethanol Extract of Golden Trumpet Leaves (Allamanda cathartica L.) Against Malassezia furfur. Journal of Pharmaceutical and Sciences, 8(4), 2749–2759. https://doi.org/10.36490/journal-jps.com.v8i4.1036
Section
Original Articles

References

Ardiana A. Perbedaan Zona Hambat Terhadap Jamur Malassezia Furfur Antara Pemberian Ekstrak Umbi Bawang Putih (Allium sativum linn) Dengan Kulit Umbi Bawang Putih (Allium sativum linn) 2017.

Irianto K. Bakteriologi Medis, Mikologi Medis, Virologi Medis. Bandung: Alfabeta 2015;2:107.

Tilaye M, Sinknew A, Mekuriaw A, Tsehay AK. Magnitude and Associated Factors of Pityriasis Versicolor Among Patients Attending Dermatovenereology Outpatient Department at the University of Gondar Comprehensive Specialized Hospital, Northwest Ethiopia. Journal of Current Health Sciences 2023;3:31–8. https://doi.org/10.47679/jchs.202346.

Sreelakshmi S, Ajith VR, Thankappan T. Clinical and Mycological Study of Pityriasis Versicolor in Relation to Species. Int J Trop Dis Health 2018;31:1–6. https://doi.org/10.9734/ijtdh/2018/41886.

Cam VT, Văn TN, Hau KT, Huu D Le, Minh PPT, Hữu SN, et al. Distribution of Malassezia Species From Scales of Patient With Pityriasis Versicolor by Culture in Vietnam. Open Access Maced J Med Sci 2019;7:184–6. https://doi.org/10.3889/oamjms.2019.091.

Zhang Z, Qiu Y, Feng H, Huang D, Weng B, Xu Z, et al. Identification of Malassezia Globosa as a Gastric Fungus Associated With PD-L1 Expression and Overall Survival of Patients With Gastric Cancer. J Immunol Res 2022;2022:1–16. https://doi.org/10.1155/2022/2430759.

Okta ALM. Uji Efektifitas Ekstrak Daun Pandan Wangi (Pandanus amaryllifolius Roxb.) sebagai Penghambat Pertumbuhan Jamur Candida albicans 2018.

Kumowal S, Fatimawali F, Jayanto I. Uji aktivitas antibakteri nanopartikel ekstrak lengkuas putih (Alpinia galanga (L.) Willd) terhadap bakteri Klebsiella pneumoniae. Pharmacon 2019;8:781–90.

Petricevich VL, Abarca-Vargas R. Allamanda cathartica: a review of the phytochemistry, pharmacology, toxicology, and biotechnology. Molecules 2019;24:1238.

Sitompul MB. Formulasi Dan Uji Aktivitas Sediaan Sampo Antiketombe Ekstrak Etanol Daun Alamanda (Allamanda Cathartica L.) Terhadap Pertumbuhan Jamur Candida Albicans Secara In Vitro. Pharmacon 2016;5.

Silva e Souza E, Barcellos V de A, Sbaraini N, Reuwsaat JCV, Schneider R de O, da Silva AC, et al. A plumieridine-rich fraction from Allamanda polyantha inhibits chitinolytic activity and exhibits antifungal properties against Cryptococcus neoformans. Front Microbiol 2020;11:2058.

Ginting OSB, Rambe R, Athaillah A, HS PM. Formulasi Sediaan Sampo Anti Ketombe Ekstrak Daun Binahong (Anredera Cordifilia (Tenore) Steen) Terhadap Aktivitas Jamur Candida Albicans Secara In Vitro. Forte Journal 2021;1:57–68.

Setiani NA, Istiqomah NA, Putra JP. Potensi Daun Binahong (Anredera cordifolia (Ten) Steenis) Sebagai Antijamur Terhadap Jamur Kulit Pityrosporum ovale. Jurnal Sains Dan Teknologi Farmasi Indonesia 2023;12:46–59.

DepKes R. Farmakope Indonesia Edisi Ketiga 1979:33.

Depkes RI. Materia Medika (Indonesia Medical Materials). 1989.

Hadiq S, Yulianti T. Skrining Fitokimia Ekstrak Metanol Daun Pandan Wangi ( Pandanus amarillyfolius Roxb ) 2023.

Nuraeni W, Daruwati I, Widyasari EM, Sriyani ME. Verifikasi kinerja alat particle size analyzer (PSA) Horiba LB-550 untuk penentuan distribusi ukuran nanopartikel 2013.

Arinda N, Khayati N. Rendam kaki dengan rebusan jahe merah dapat mencegah terjadinya eklamsia. Jurnal Ilmu Keperawatan Maternitas 2019;2:36.

Saputera MMA, Marpaung TWA, Ayuchecaria N. Konsentrasi hambat minimum (KHM) kadar ekstrak etanol batang bajakah tampala (Spatholobus Littoralis Hassk) terhadap bakteri Escherichia coli melalui metode sumuran. Jurnal Ilmiah Manuntung 2019;5:167–73.

Zanuary AR. Efektifitas daya antibakteri ekstrak daun matoa Pometia (Pinnata JR & G. Fors) dalam berbagai konsentrasi terhadap pertumbuhan Streptococcus Mutans (secara in vitro) 2014.

Rahmi EP, Kumolosasi E, Jalil J, Buang F, Jamal JA. Extracts of andrographis paniculata (burm. f.) nees leaves exert anti-gout effects by lowering uric acid levels and reducing monosodium urate crystal-induced inflammation. Front Pharmacol 2022;12:787125.

Rahmi M, Sari TM. Antibacterial activity of ethanol extract, n-hexan, ethyl acetate and butanol fraction of Momordica charantia L. seed against Staphylococcus epidermidis. J Phys Conf Ser, vol. 1918, IOP Publishing; 2021, p. 52013.

Ramadhan G, Hanafi P, Sulistiorini R. Perbandingan Daya Hambat Flukonazol dengan Mikonazol terhadap Jamur Candida albicans secara In Vitro. Prosiding Seminar Nasional & Internasional, vol. 1, 2017.

Ashraf MV, Pant S, Khan MAH, Shah AA, Siddiqui S, Jeridi M, et al. Phytochemicals as antimicrobials: prospecting Himalayan medicinal plants as source of alternate medicine to combat antimicrobial resistance. Pharmaceuticals 2023;16:881.

El-Bondkly EAM, El-Bondkly AAM, El-Bondkly AAM. Marine endophytic fungal metabolites: A whole new world of pharmaceutical therapy exploration. Heliyon 2021;7.

Khan H, S. Mubarak M, Amin S. Antifungal potential of alkaloids as an emerging therapeutic target. Curr Drug Targets 2017;18:1825–35.

Thawabteh A, Juma S, Bader M, Karaman D, Scrano L, Bufo SA, et al. The biological activity of natural alkaloids against herbivores, cancerous cells and pathogens. Toxins (Basel) 2019;11:656.

Utami Y, Arruansaratu E, Jumaetri F. Analisis Kadar Total Alkaloid Dari Beberapa Ekstrak Daun Patikala (Etlingera Elatior (Jack) RM Smith). Prosiding Seminar Nasional Kefarmasian Program Studi Farmasi FMIPA Universitas Sam Ratulangi, vol. 1, 2022, p. 1–6.

Al Aboody MS, Mickymaray S. Anti-fungal efficacy and mechanisms of flavonoids. Antibiotics 2020;9:45.

Seleem D, Pardi V, Murata RM. Review of flavonoids: A diverse group of natural compounds with anti-Candida albicans activity in vitro. Arch Oral Biol 2017;76:76–83. https://doi.org/https://doi.org/10.1016/j.archoralbio.2016.08.030.

Utami M, Advinda L, Violita V, Chatri M. The Effectiveness Of Noni Leaf Extract (Morinda citrifolia L.) As Antifungal Against The Growth Of Sclerotium rolfsii In Vitro. Jurnal Serambi Biologi 2022;7:199–204.

Hardiningtyas SD. Aktivitas antibakteri ekstrak karang lunak Sarcophyton sp. yang difragmentasi dan tidak difragmentasi di perairan Pulau Pramuka, Kepulauan Seribu. 2009.

Sudarmi K, Darmayasa IBG, Muksin IK. Uji fitokimia dan daya hambat ekstrak daun juwet (Syzygium cumini) terhadap pertumbuhan Escherichia coli dan Staphylococcus aureus ATCC. Jurnal Simbiosis 2017;5:47–51.

Putra SHJ, Sawu E. Mortalitas Kutu Rambut (Pediculus humanus) Pasca Treatment Larutan Daun Kirinyuh (Chromolena odorata). Justek: Jurnal Sains Dan Teknologi 2022;5:442–9.

Gunawan H, Rahayu YP. Uji Aktivitas Antibakteri Formulasi Sediaan Pasta Gigi Gel Ekstrak Daun Salam (Syzygium polyanthum (Wight) Walp) Terhadap Streptococcus mutans. FARMASAINKES: Jurnal Farmasi, Sains, Dan Kesehatan 2021;1:56–67.

Rahayu YP, Lubis MS, Mutti-in K. Formulasi Sediaan Sabun Cair Antiseptik Ekstrak Biji Pepaya (Carica papaya L.) Dan Uji Efektivitas Antibakterinya Terhadap Staphylococcus aureus. Prosiding Seminar Nasional Hasil Penelitian, vol. 4, 2021, p. 373–88.

Rahayu YP, Sirait US. Formulasi Sediaan Obat Kumur (Mouthwash) Ekstrak Daun Salam (Syzygium polyanthum (Wight) Walp.) Dan Uji Antibakterinya Terhadap Streptococcus mutans Secara In Vitro. Prosiding Seminar Nasional Hasil Penelitian, vol. 5, 2022, p. 370–9.

Fahira N, Rahayu YP, Nasution HM, Nasution MP. Uji aktivitas antibakteri nanopartikel ekstrak etanol daun matoa ( Pometia pinnata J . R Forst & G . Forst ) terhadap bakteri Streptococcus mutans. Jurnal Riset Kefarmasian Indonesia 2023;5:100–19.

Razoki R. Antioxidant and Antibacterial Activities of Ethanol Extract of Matoa (Pometia pinnata) Leaves. Journal of Pharmaceutical and Sciences 2023:351–7.

Rahmat D, Wirawan D. Formulasi Gel Nanopartikel Ekstrak Temulawak (Curcuma xantohrriza roxb.) Berbasis Kitosan Na-Tripolifosfat sebagai Antiacne. Majalah Farmasetika 2020;4:107–12.

Naito M, Yokoyama T, Hosokawa K, Nogi K. Nanoparticle technology handbook. Elsevier; 2018.

Hajipour MJ, Saei AA, Walker ED, Conley B, Omidi Y, Lee K, et al. Nanotechnology for targeted detection and removal of bacteria: opportunities and challenges. Advanced Science 2021;8:2100556.

Kim JS, Kuk E, Yu KN, Kim J-H, Park SJ, Lee HJ, et al. Antimicrobial effects of silver nanoparticles. Nanomedicine 2007;3:95–101.

Hwang ET, Lee JH, Chae YJ, Kim YS, Kim BC, Sang B, et al. Analysis of the toxic mode of action of silver nanoparticles using stress‐specific bioluminescent bacteria. Small 2008;4:746–50.

Gupta D, Singh A, Khan AU. Nanoparticles as efflux pump and biofilm inhibitor to rejuvenate bactericidal effect of conventional antibiotics. Nanoscale Res Lett 2017;12:454.

Benoit DSW, Sims Jr KR, Fraser D. Nanoparticles for oral biofilm treatments. ACS Nano 2019;13:4869–75.

Nguyen T-K, Lam SJ, Ho KKK, Kumar N, Qiao GG, Egan S, et al. Rational design of single-chain polymeric nanoparticles that kill planktonic and biofilm bacteria. ACS Infect Dis 2017;3:237–48.

Liu Y, Naha PC, Hwang G, Kim D, Huang Y, Simon-Soro A, et al. Topical ferumoxytol nanoparticles disrupt biofilms and prevent tooth decay in vivo via intrinsic catalytic activity. Nat Commun 2018;9:2920.

Gómez-Gómez B, Arregui L, Serrano S, Santos A, Pérez-Corona T, Madrid Y. Unravelling mechanisms of bacterial quorum sensing disruption by metal-based nanoparticles. Science of The Total Environment 2019;696:133869.

Hayat S, Muzammil S, Shabana null, Aslam B, Siddique MH, Saqalein M, et al. Quorum quenching: role of nanoparticles as signal jammers in Gram-negative bacteria. Future Microbiol 2019;14:61–72.

Mohanty A, Tan CH, Cao B. Impacts of nanomaterials on bacterial quorum sensing: differential effects on different signals. Environ Sci Nano 2016;3:351–6.

Most read articles by the same author(s)

<< < 1 2 3 4 5 6 7 8 9 > >>