Integrasi Profil Fitokimia Berbasis GC–MS dan Evaluasi Farmakologis In Vivo dalam Menilai Potensi Antidiabetes Ekstrak Etanol Scleria sumatrensis Retz. pada Model Tikus Diabetes Induksi Aloksan.
Isi Artikel Utama
Page: 2863-2871
Abstrak
Penelitian ini mengevaluasi aktivitas antidiabetes dan profil fitokimia ekstrak etanol Scleria sumatrensis Retz. menggunakan model tikus diabetes induksi aloksan. Diabetes diinduksi dengan injeksi intraperitoneal aloksan (150 mg/kgBB) setelah puasa 12 jam, dan kadar glukosa darah puasa diukur pada GD1 (sebelum induksi), GD2 (72 jam setelah induksi), dan GD3 (hari ke-14 perlakuan). Analisis GC–MS mengidentifikasi beberapa senyawa utama, termasuk ethyl α-D-glucopyranoside, ethyl linoleate, ethyl linolenate, phytol, tokoferol, dan β-sitosterol, yang diketahui berperan dalam peningkatan sensitivitas insulin, modulasi jalur PPAR-γ, perlindungan antioksidan terhadap sel β pankreas, serta penghambatan pencernaan karbohidrat. Tikus dibagi menjadi kelompok kontrol negatif (vehicle), kontrol positif (metformin 45 mg/kgBB), dan perlakuan ekstrak (75, 150, dan 300 mg/kgBB). Persentase penurunan glukosa dari GD2 ke GD3 dianalisis menggunakan ANOVA satu arah dan uji lanjut Tukey. Ekstrak menunjukkan penurunan glukosa yang signifikan dan bergantung dosis (p < 0.001). Semua dosis ekstrak berbeda signifikan dari kontrol negatif, dan dosis 300 mg/kgBB menunjukkan efektivitas sebanding dengan metformin. Hasil ini menunjukkan bahwa Scleria sumatrensis memiliki aktivitas antihiperglikemia yang kuat, konsisten dengan komposisi fitokimianya. Studi lanjutan diperlukan untuk memverifikasi mekanisme dan mengidentifikasi senyawa aktif utamanya.
Unduhan
Rincian Artikel

Artikel ini berlisensiCreative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Referensi
Lovic D, Piperidou A, Zografou I, Grassos H, Pittaras A, Manolis A. The growing epidemic of diabetes mellitus. Curr Vasc Pharmacol 2020;18:104–9. DOI: https://doi.org/10.2174/1570161117666190405165911
Sun H, Saeedi P, Karuranga S, Pinkepank M, Ogurtsova K, Duncan BB, et al. IDF Diabetes Atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes Res Clin Pract 2022;183. https://doi.org/10.1016/j.diabres.2021.109119. DOI: https://doi.org/10.1016/j.diabres.2021.109119
Kementerian Kesehatan Republik Indonesia. Prevalence, Impact, and Efforts In Controlling Hypertension 2024.
Panjaitan RGP, Titin, Yuliana YGS, Khotimah S. Plants with Antidiabetic Efficacy among the Dayak Bidayuh Community, Sanggau Regency, West Kalimantan, Indonesia. Pharmacogn J 2024;16:1342 – 1348. https://doi.org/10.5530/pj.2024.16.216. DOI: https://doi.org/10.5530/pj.2024.16.216
Sari TAN, Nurfitriani D, Mutamimah R, Yudiyanto Y, Wakhidah AZ. The Diversity ff Medicinal Plants Used by the Local Community in Borneo, Indonesia: A Review. J Jamu Indones (Indonesia J Jamu) 2025;10:24–39. DOI: https://doi.org/10.29244/jji.v10i1.324
Wiraswati HL, Pradini GW, Fauziah N, Laelalugina A, Arimdayu AR, Supandi S, et al. Biological potential of eight medicinal plants collected in the restored landscape after mining in South Kalimantan. Discov Appl Sci 2024;6:308. DOI: https://doi.org/10.1007/s42452-024-05824-2
Pareta DN, P RR, Tulandi SS, Kanter JW, Potalangi NO. Antibacterial Activity Test of Scleria sumatrensis Leaf Extract against Staphylococcus aureus in Vitro. Biofarmasetikal Trop (The Trop J Biopharm 2025;8:50–6. https://doi.org/10.55724/jbiofartrop.v8i1.506. DOI: https://doi.org/10.55724/jbiofartrop.v8i1.506
RANJAN S, Chaitali ROY, SINHA SK. Gas chromatography--mass spectrometry (GC-MS): A comprehensive review of synergistic combinations and their applications in the past two decades. J Anal Sci Appl Biotechnol 2023;5:72–85.
Jerković I, Kuś PM, Carbonell-Barrachina ÁA. Volatile organic compounds are artefacts derived from natural phytochemicals sourced from plants and honey. Phytochem Rev 2019;18:871–91. DOI: https://doi.org/10.1007/s11101-019-09621-3
Vagare RD, Mane SR, Bais SK. Review of phytochemical analysis of finished product by chromatographic techniques. Int J Pharm Herbal Technol 2025;3:2583–8962.
Sadgrove NJ, Padilla-González GF, Phumthum M. Fundamental chemistry of essential oils and volatile organic compounds, methods of analysis and authentication. Plants 2022;11:789. DOI: https://doi.org/10.3390/plants11060789
Tapehe CJA, Pareta DN, Tulandi SS, Potalangi NO. Uji Aktivitas Antidiabetes Ekstrak Daun Epazote (Dysphania ambrosioides L.) Pada Tikus Putih (Rattus novergicus) Yang Diinduksi Aloksan. Biofarmasetikal Trop (The Trop J Biopharm 2022;5:148 54. https://doi.org/10.55724/jbt.v5i2.392. DOI: https://doi.org/10.55724/jbt.v5i2.392
Allen F, Pon A, Greiner R, Wishart D. Computational prediction of electron ionization mass spectra to assist in GC/MS compound identification. Anal Chem 2016;88:7689–97. DOI: https://doi.org/10.1021/acs.analchem.6b01622
Sato D, Oda K, Kusunoki M, Nishina A, Takahashi K, Feng Z, et al. PPARγ activation alters fatty acid composition in adipose triglyceride, in addition to proliferation of small adipocytes, in insulin-resistant high-fat-fed rats. Eur J Pharmacol 2016;773:71 – 77. https://doi.org/10.1016/j.ejphar.2016.01.012. DOI: https://doi.org/10.1016/j.ejphar.2016.01.012
Montoya-Arroyo A, Muñoz-González A, Lehnert K, Frick K, Schmid-Staiger U, Vetter W, et al. Monodopsis subterranea is a source of α-tocomonoenol, and its concentration, unlike that of α-tocopherol, is not affected by nitrogen depletion. Food Sci & Nutr 2024;12:1869–79. https://doi.org/https://doi.org/10.1002/fsn3.3880. DOI: https://doi.org/10.1002/fsn3.3880
P Costa J, Islam T, S Santos P, B Ferreira P, LS Oliveira G, VOB Alencar M, et al. Evaluation of antioxidant activity of phytol using non-clinical and pre-clinical models. Curr Pharm Biotechnol 2016;17:1278–84. DOI: https://doi.org/10.2174/1389201017666161019155715
Stanetic D, Buchbauer G. Biological activity of some volatile diterpenoids. Curr Bioact Compd 2015;11:38–48. DOI: https://doi.org/10.2174/157340721101150804150419
Costa V, Costa M, Rebelo R, Arques F, Ferreira M, Gameiro P, et al. Phytyl Phenolipids: Structurally Modified Antioxidants with Superior Lipid Membrane Interaction. Molecules 2025;30:2193. DOI: https://doi.org/10.3390/molecules30102193
Islam MT, Ali ES, Mubarak MS. Anti-obesity effect of plant diterpenes and their derivatives: a review. Phyther Res 2020;34:1216–25. DOI: https://doi.org/10.1002/ptr.6602
Costea L, Chițescu CL, Boscencu R, Ghica M, Lupuliasa D, Mihai DP, et al. The polyphenolic profile and antioxidant activity of five vegetal extracts with hepatoprotective potential. Plants 2022;11:1680. DOI: https://doi.org/10.3390/plants11131680
Eguchi N, Vaziri ND, Dafoe DC, Ichii H. The role of oxidative stress in pancreatic $β$ cell dysfunction in diabetes. Int. J. Mol. Sci. 2021;22:1509. DOI: https://doi.org/10.3390/ijms22041509
Choudhary D, Shekhawat JK, Kataria V. GC-MS analysis of bioactive phytochemicals in methanol extract of aerial part and callus of dipterygium glaucum decne. Pharmacogn J 2019;11. DOI: https://doi.org/10.5530/pj.2019.11.165
Sunarwidhi AL, Rahmaniar W, Prasedya ES, Padmi H, Widyastuti S, Pangestu KWJ, et al. In Vitro Anti-Oxidant, In Vivo Anti-Hyperglycemic, and Untargeted Metabolomics-Aided-In Silico Screening of Macroalgae Lipophilic Extracts for Anti-Diabetes Mellitus and Anti-COVID-19 Potential Metabolites. Metabolites 2023;13:1177. DOI: https://doi.org/10.3390/metabo13121177
Yang Q, Vijayakumar A, Kahn BB. Metabolites as regulators of insulin sensitivity and metabolism. Nat Rev Mol Cell Biol 2018;19:654–72. DOI: https://doi.org/10.1038/s41580-018-0044-8
Babu S, Jayaraman S. An update on $β$-sitosterol: A potential herbal nutraceutical for diabetic management. Biomed & Pharmacother 2020;131:110702. DOI: https://doi.org/10.1016/j.biopha.2020.110702
Jayaraman S, Roy A, Vengadassalapathy S, Sekar R, Veeraraghavan VP, Rajagopal P, et al. An overview of the therapeutic function of foods enriched with plant sterols in diabetes management. Antioxidants 2021;10:1903. DOI: https://doi.org/10.3390/antiox10121903
Unuofin JO, Lebelo SL. Antioxidant effects and mechanisms of medicinal plants and their bioactive compounds for the prevention and treatment of type 2 diabetes: an updated review. Oxid Med Cell Longev 2020;2020:1356893. DOI: https://doi.org/10.1155/2020/1356893
Mihailović M, Dinić S, Arambašić Jovanović J, Uskoković A, Grdović N, Vidaković M. The influence of plant extracts and phytoconstituents on antioxidant enzyme activity and gene expression in the prevention and treatment of impaired glucose homeostasis and diabetes complications. Antioxidants 2021;10:480. DOI: https://doi.org/10.3390/antiox10030480
Papuc C, Goran G V, Predescu CN, Tudoreanu L, Ștefan G. Plant polyphenols mechanisms of action on insulin resistance and against the loss of pancreatic beta cells. Crit Rev Food Sci Nutr 2021;62:325–52. DOI: https://doi.org/10.1080/10408398.2020.1815644
Feng S, Reuss L, Wang Y. Potential of natural products in the inhibition of adipogenesis through regulation of PPAR$γ$ expression and/or its transcriptional activity. Molecules 2016;21:1278. DOI: https://doi.org/10.3390/molecules21101278
Khalilpourfarshbafi M, Gholami K, Murugan DD, Abdul Sattar MZ, Abdullah NA. Differential effects of dietary flavonoids on adipogenesis. Eur J Nutr 2019;58:5–25. DOI: https://doi.org/10.1007/s00394-018-1663-8
Sindhu G, Priya P V, Reddy TUK, Lakshmi KMR, Apparao C, Raviteja M. Preliminary Phytochemical Analysis of Methanolic Extract of the whole Plant of Scleria Lithosperma 2022;10:18–23.
Karunasree CP, Prasad P, Jayashankar Reddy V, Madakka M. Cardioprotective Effect of textit{Scleria lithosperma} on Doxorubicin-induced Cardiotoxicity in Wistar Albino Rats. Annu Res & Rev Biol 2015;8:1–9. https://doi.org/10.9734/ARRB/2015/11369. DOI: https://doi.org/10.9734/ARRB/2015/11369
Singh P, Khosa RL, Mishra G, Jha KK. Antidiabetic activity of ethanolic extract of Cyperus rotundus rhizomes in streptozotocin-induced diabetic mice. J Pharm Bioallied Sci 2015;7:289–92. DOI: https://doi.org/10.4103/0975-7406.168028
Mohamed AI, Beseni BK, Msomi NZ, Salau VF, Erukainure OL, Aljoundi A, et al. The antioxidant and antidiabetic potentials of polyphenolic-rich extracts of Cyperus rotundus (Linn.). J Biomol Struct Dyn 2022;40:12075–87. DOI: https://doi.org/10.1080/07391102.2021.1967197
Abdella FIA, Toumi A, Boudriga S, Alanazi TYA, Alshamari AK, Alrashdi AA, et al. Anti-obesity and antidiabetic effects of Cyperus rotundus rhizomes, presenting protein tyrosine phosphatase, dipeptidyl peptidase 4, metabolic enzymes, stress-oxidant, and inflammation-inhibitory potential. Heliyon 2024;10. DOI: https://doi.org/10.1016/j.heliyon.2024.e27598
Wani PA, Omobolanle LA, Hamid B, Fayokemi RA, Perveen K, Bukhari NA, et al. Evaluation of destruction of bacterial membrane structure associated with anti-quorum-sensing and antidiabetic activity of Cyperus esculentus extract. Heliyon 2024;10:e34128. https://doi.org/10.1016/j.heliyon.2024.e34128. DOI: https://doi.org/10.1016/j.heliyon.2024.e34128