Main Article Content

Khairinna Prihandini
Budipratiwi Wisudyaningsih
Yudi Wicaksono

Page: 1674-1681

Abstract

Background: Gemfibrozil is an antihyperlipidemic drug that effectively lowers cholesterol and triglyceride levels in the blood. However, it has limitations, primarily low solubility and compactibility. Objective: The objective of this study was to analyze the solid interactions in a binary mixture of gemfibrozil and nicotinamide, which is useful for modifying the physicochemical properties of gemfibrozil through the formation of multicomponent solids. Methods: The method employed for solid-state interaction analysis was differential scanning calorimetry (DSC), which involved constructing solid-liquid phase diagrams, accompanied by Fourier transform infrared spectroscopy (FTIR) analysis to identify any hydrogen bonding interactions between the components. Results: The results revealed that the gemfibrozil-nicotinamide binary mixture formed a solid-liquid phase diagram characterized by a V-type solid curve. A eutectic mixture was observed at a molar ratio of 8:2, with a eutectic melting point of 59.3 °C. FTIR analysis revealed no hydrogen bonding interactions between gemfibrozil and nicotinamide. Conclusion: It was concluded that gemfibrozil in the binary mixture system did not form a solid interaction with nicotinamide but was a eutectic mixture. These findings can be used to design strategies for improving the physicochemical properties of gemfibrozil through the formation of multicomponent solids.

Downloads

Download data is not yet available.

Article Details

How to Cite
Prihandini , K., Wisudyaningsih , B., & Wicaksono, Y. (2025). Solid-State Interactions and Eutectic Formation in Gemfibrozil-Nicotinamide Binary Mixtures . Journal of Pharmaceutical and Sciences, 8(3), 1674–1681. https://doi.org/10.36490/journal-jps.com.v8i3.986
Section
Original Articles

References

Kim K, Kleinman HK, Lee H-J, Pahan K. Safety and potential efficacy of gemfibrozil as a supportive treatment for children with late infantile neuronal ceroid lipofuscinosis and other lipid storage disorders. Orphanet Journal of Rare Diseases. 2017;12(1). https://doi.org/10.1186/s13023-017-0663-8 DOI: https://doi.org/10.1186/s13023-017-0663-8

Roy A, Pahan K. Gemfibrozil, stretching arms beyond lipid lowering. Immunopharmacology and Immunotoxicology. 2009;31(3):339–51. https://doi.org/10.1080/08923970902785253 DOI: https://doi.org/10.1080/08923970902785253

Gufran MFM, Ghatuary SK, Shende R, Jain P, Parkhe G. Formulation, development and evaluation of bilayer floating tablet of gemfibrozil. Journal of Drug Delivery and Therapeutics. 2019;9(4):574–8. https://doi.org/10.22270/jddt.v9i4-s.3401 DOI: https://doi.org/10.22270/jddt.v9i4-s.3401

Rouini MR, Ardakani YH, Mirfazaelian A, Hakemi L, Baluchestani M. Investigation on different levels of in vitro–in vivo correlation: gemfibrozil immediate release capsule. Biopharmaceutics & Drug Disposition. 2008;29(6):349–55. https://doi.org/10.1002/bdd.620 DOI: https://doi.org/10.1002/bdd.620

Bigogno ER, Soares L, Mews MHR, Zétola M, Bazzo GC, Stulzer HK, et al. It is possible to achieve tablets with good tabletability from solid dispersions – the case of the high dose drug gemfibrozil. Current Drug Delivery. 2020;18(4):460–70. https://doi.org/10.2174/1567201817666201023121948 DOI: https://doi.org/10.2174/1567201817666201023121948

Singh M, Barua H, Jyothi VGSS, Dhondale MR, Nambiar AG, Agrawal AK, et al. Cocrystals by design: a rational coformer selection approach for tackling the API problems. Pharmaceutics. 2023;15(4):1161. https://doi.org/10.3390/pharmaceutics15041161 DOI: https://doi.org/10.3390/pharmaceutics15041161

Butreddy A, Almutairi M, Komanduri N, Bandari S, Zhang F, Repka MA. Multicomponent crystalline solid forms of aripiprazole produced via hot melt extrusion techniques: an exploratory study. Journal of Drug Delivery Science and Technology. 2021;63:102529. https://doi.org/10.1016/j.jddst.2021.102529 DOI: https://doi.org/10.1016/j.jddst.2021.102529

Queiroz LHS, Lage MR, Santos CCD, Sarraguça MC, Ribeiro PRS. Thermodynamic and structural characterization of a mechanochemically synthesized pyrazinamide–acetylsalicylic–acid eutectic mixture. Pharmaceuticals. 2025;18(2):211. https://doi.org/10.3390/ph18020211 DOI: https://doi.org/10.3390/ph18020211

Ellena J. Crystal engineering in the design of new solid pharmaceutical forms with enhanced pharmaceutical properties. Journal of Experimental Techniques and Instrumentation. 2021;4(3):72–80. https://doi.org/10.30609/jeti.v4i03.12950 DOI: https://doi.org/10.30609/jeti.v4i03.12950

Chaudhary SK, Rai RN, Maity S, Maiti P. Solid-state synthesis of novel anticancer drug eutectic mixture; anticancer, physical and thermal studies. Materials Letters. 2024;375:137255. https://doi.org/10.1016/j.matlet.2024.137255 DOI: https://doi.org/10.1016/j.matlet.2024.137255

Dias JL, Rebelatto EA, Hotza D, Bortoluzzi AJ, Lanza M, Ferreira SRS. Production of quercetin-nicotinamide cocrystals by gas antisolvent (GAS) process. Journal of Supercritical Fluids. 2022;188:105670. https://doi.org/10.1016/j.supflu.2022.105670 DOI: https://doi.org/10.1016/j.supflu.2022.105670

Kobata PYG, Ticona-Chambi J, Santo AME, Cuffini SL. Eutectic mixtures containing the active pharmaceutical ingredient ezetimibe: phase diagrams, solid state characterization and dissolution profiles. Journal of Crystal Growth. 2024; 642:127775. https://doi.org/10.1016/j.jcrysgro.2024.127775 DOI: https://doi.org/10.1016/j.jcrysgro.2024.127775

Wicaksono Y, Setyawan D, Siswandono S. Analysis of solid-state interactions of ketoprofen-coformer binary mixtures by DSC and hot stage microscopy. Molekul. 2020;15(2):121. https://doi.org/10.20884/1.jm.2020.15.2.638 DOI: https://doi.org/10.20884/1.jm.2020.15.2.638

Agarwal P, Svirskis D, Nieuwoudt MK. Thermodynamic and spectroscopic evaluation of the eutectic mixture of myristic acid and the local anaesthetics, bupivacaine and ropivacaine. RSC Pharmaceutics. 2024;1(2):296–304. https://doi.org/10.1039/d3pm00082f DOI: https://doi.org/10.1039/D3PM00082F

Patel RD, Raval M, Pethani T, Sheth N. Influence of eutectic mixture as a multicomponent system in the improvement of physicomechanical and pharmacokinetic properties of diacerein. Advanced Powder Technology. 2020;31(4):1441–56. https://doi.org/10.1016/j.apt.2020.01.021 DOI: https://doi.org/10.1016/j.apt.2020.01.021

Patel RD, Raval MK, Bagathariya AA, Sheth NR. Functionality improvement of nimesulide by eutectic formation with nicotinamide: exploration using temperature-composition phase diagram. Advanced Powder Technology. 2019;30(5):961–73. https://doi.org/10.1016/j.apt.2019.02.010 DOI: https://doi.org/10.1016/j.apt.2019.02.010

Ain S, Singh R, Ain Q. Characterization and intrinsic dissolution rate study of microwave assisted cyclodextrin inclusion complexes of gemfibrozil. International Journal of Pharmacy and Pharmaceutical Sciences. 2016;8(10):160–3. https://doi.org/10.22159/ijpps.2016v8i10.13359 DOI: https://doi.org/10.22159/ijpps.2016v8i10.13359

Wicaksono Y, Setyawan D, Siswandono S. Multicomponent crystallization of ketoprofen-nicotinamide for improving the solubility and dissolution rate. Chemistry Journal of Moldova. 2018;13(2):74–81. https://doi.org/10.19261/cjm.2018.493 DOI: https://doi.org/10.19261/cjm.2018.493

Trache D, Khimeche K, Benelmir R, Dahmani A. DSC measurement and prediction of phase diagrams for binary mixtures of energetic materials’ stabilizers. Thermochimica Acta. 2013;565:8–16. https://doi.org/10.1016/j.tca.2013.04.021 DOI: https://doi.org/10.1016/j.tca.2013.04.021

Marinescu DC, Pincu E, Oancea P, Bruni G, Marini A, Meltzer V. Solid-state study of captopril and metoprolol tartrate binary system. Journal of Thermal Analysis and Calorimetry. 2014;120(1):829–37. https://doi.org/10.1007/s10973-014-3828-x DOI: https://doi.org/10.1007/s10973-014-3828-x

Sharma KP, Shakya PR, Rai R. Solid–liquid equilibria, physicochemical and microstructural studies of binary organic eutectic alloy: urea + 2-aminobenzothiazole system. Scientific World. 2012;10(10):91–4. https://doi.org/10.3126/sw.v10i10.6871 DOI: https://doi.org/10.3126/sw.v10i10.6871

Wannur V, Patil A. Eutectic mixtures: bridging physicochemical fundamentals and technological applications. International Journal on Science and Technology. 2025;16(2). https://doi.org/10.71097/ijsat.v16.i2.6017 DOI: https://doi.org/10.71097/IJSAT.v16.i2.6017

Fandaruff C, Quirós-Fallas MI, Vega‐Baudrit JR, Navarro-Hoyos M, Lamas DG, Araya‐Sibaja AM. Saquinavir-piperine eutectic mixture: preparation, characterization, and dissolution profile. Pharmaceutics. 2023;15(10):2446. https://doi.org/10.3390/pharmaceutics15102446 DOI: https://doi.org/10.3390/pharmaceutics15102446

Silva JRA, da Cunha Holanda BB, de Souza e Silva GT, Moraes CRP, Barbosa TWL, dos Santos ÉM, et al. Gemfibrozil-trans-cinnamic acid cocrystal: synthesis, characterization, in vitro solubility and cell viability studies. Journal of Applied Pharmaceutical Science. 2023;13(9):18–26. https://doi.org/10.7324/JAPS.2023.93828 DOI: https://doi.org/10.7324/JAPS.2023.93828