Penetapan Kadar Asam Klorogenat dan Aktivitas Antioksidan Ekstrak NADES dari Biji Kopi Hijau Robusta (Coffea canephora) Menggunakan Metode MAE dan UAE sebagai Bahan Baku Kosmetik
Isi Artikel Utama
Page: 1866-1876
Abstrak
Antioksidan berperan penting dalam melindungi sel-sel kulit dari radikal bebas yang menyebabkan kerusakan oksidatif, sehingga mendukung kesehatan kulit manusia. Antioksidan alami banyak ditemukan dalam tumbuhan, terutama pada biji kopi Robusta hijau (Coffea canephora) yang kaya akan asam klorogenat, senyawa utama yang berkontribusi terhadap aktivitas antioksidan. Untuk memperoleh senyawa bioaktif ini secara efektif, diperlukan metode ekstraksi yang efisien. Teknik modern seperti Ultrasound-Assisted Extraction (UAE) dan Microwave-Assisted Extraction (MAE) dapat meningkatkan perpindahan massa dan mempercepat waktu ekstraksi dibanding metode konvensional. Penelitian ini menentukan kadar asam klorogenat menggunakan Thin Layer Chromatography-Densitometry (TLC-densitometri) dan mengukur aktivitas antioksidan dari ekstrak NADES (betaine–triethylene glycol) biji kopi Robusta hijau yang diekstraksi dengan metode UAE dan MAE. Kapasitas antioksidan dianalisis menggunakan uji DPPH. Hasil menunjukkan kadar asam klorogenat pada MAE (3,64 mg AK/g ekstrak ± 0,06) lebih tinggi dibandingkan dengan UAE (2,69 mg AK/g ekstrak ± 0,04). Nilai IC₅₀ aktivitas antioksidan adalah 3266,66 μg/mL ± 67,97 (UAE) dan 2598,05 μg/mL ± 29,42 (MAE). Jika dinyatakan sebagai ekivalen asam klorogenat, nilai IC₅₀ masing-masing sebesar 9,04 ± 0,13 μg/mL (UAE) dan 9,44 ± 0,07 μg/mL (MAE). Hasil ini menunjukkan bahwa metode NADES-MAE dapat menjadi metode yang menjanjikan untuk mendapatkan bahan baku kaya antioksidan terutama untuk formulasi kosmetika.
Unduhan
Rincian Artikel

Artikel ini berlisensiCreative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Referensi
Martemucci, G., Costagliola, C., Mariano, M., D'andrea, L., Napolitano, P. & D'Alessandro, A.G., 2022. Free Radical Properties, Source and Targets, Antioxidant Consumption and Health. Oxygen, 2(2), pp.48-78. DOI: https://doi.org/10.3390/oxygen2020006
Wahdaningsih, S., Setyowati, E.P. & Wahyuono, S., 2011. Free Radical Scavenging Activity of Alsophila glauca J. Sm. Majalah Obat Tradisional, 16(3), pp.156-160.
Rahmi, H., 2017. Review: Antioxidant Activity from Various Resources of Fruits in Indonesia. Jurnal Agrotek Indonesia, 2(1), pp.34-38. DOI: https://doi.org/10.33661/jai.v2i1.721
Khadim, R.M. & Al-Fartusie, F.S., 2021. Antioxidant vitamins and their effect on the immune system. Journal of Physics: Conference Series, 1853(1), p.012065. DOI: https://doi.org/10.1088/1742-6596/1853/1/012065
Chairgulprasert, V. & Kittiya, K., 2017. Preliminary phytochemical screening and antioxidant activity of robusta coffee. Thammasat Journal of Blossom: International Science and Technology, 22(1), pp.1-8.
Yusmarini, 2011. Polyphenol compounds in coffee: effects of processing, metabolism, and their relationship to health. Jurnal SAGU, 10(2), pp.22-30.
Handayani, R. & Muchlis, F., 2021. Review: Benefits of Chlorogenic Acid from Coffee Beans as Cosmetic Raw Material. Fitofarmaka: Jurnal Ilmiah Farmasi, 11(1), pp.43-50. DOI: https://doi.org/10.33751/jf.v11i1.2357
Surani, S., n.d. The Influence of Using Video Tutorials on Assembling Practical Equipment on Students' Understanding and Knowledge in the Isolation and Synthesis of Organic Compounds Practical. Indonesian Journal of Laboratory, 1(3), pp.205-210.
Susanty, S. & Bachmid, F., 2016. Comparison of maceration and reflux extraction methods on phenolic content of corn cob extract (Zea mays L.). Jurnal Konversi, 5(2), pp.87-92. DOI: https://doi.org/10.24853/konversi.5.2.87-92
López-Salazar, H., Camacho-Díaz, B.H., Ocampo, M.A. & Jiménez-Aparicio, A.R. 2023. Microwave-assisted extraction of functional compounds from plants: A Review. Bioresources, 18(3), p.6614. DOI: https://doi.org/10.15376/biores.18.3.Lopez-Salazar
Handaratri, A. & Yuniati, Y., 2019. Study of anthocyanin extraction from mulberry fruit using sonication and microwave methods. Reka Buana: Jurnal Ilmiah Teknik Sipil Dan Teknik Kimia, 4(1), p.63. DOI: https://doi.org/10.33366/rekabuana.v4i1.1162
Mbous, Y.P., Hayyan, M., Hayyan, A., Wong, W.F., Hashim, M.A. & Looi, C.Y., 2017. Applications of deep eutectic solvents in biotechnology and bioengineering—Promises and challenges. Biotechnology Advances, 35, pp.105-134. DOI: https://doi.org/10.1016/j.biotechadv.2016.11.006
Yuniarti, E., Saputri, F.C. & Mun'im, A., 2019. Application of the natural deep eutectic solvent choline chloride-sorbitol to extract chlorogenic acid and caffeine from green coffee beans (Coffea canephora). Journal of Applied Pharmaceutical Science, 9(3), pp.82-90. DOI: https://doi.org/10.7324/JAPS.2019.90312
Fanali, C., Posta, S.D., Dugo, L., Gentili, A., Mondello, L. & de Gara, L., 2020. Choline chloride and betaine-based deep eutectic solvents for green extraction of nutraceutical compounds from spent coffee grounds. Journal of Pharmaceutical and Biomedical Analysis, 189, p.113421. DOI: https://doi.org/10.1016/j.jpba.2020.113421
Theafelicia, Z. & Wulan, S.N., 2023. Comparison of Various Antioxidant Activity Testing Methods (DPPH, ABTS, and FRAP) on Black Tea (Camellia sinensis). Jurnal Teknologi Pertanian, 24(1), pp.35-44. DOI: https://doi.org/10.21776/ub.jtp.2023.024.01.4
García-Roldán, A., Piriou, L. & Jauregi, P., 2023. Natural deep eutectic solvents as a green extraction of polyphenols from spent coffee grounds with enhanced bioactivities. Frontiers in Plant Science, 13, p.1072592. DOI: https://doi.org/10.3389/fpls.2022.1072592
Alchera, F., Ginepro, M. & Giacalone, G., 2024. Microwave-assisted extraction (MAE) of bioactive compounds from blueberry by-products using a sugar-based NADES: A novelty in green chemistry. LWT, 192, 115642. DOI: https://doi.org/10.1016/j.lwt.2023.115642
Kristiningrum, N., Retnaningtyas, Y., & Pertiwi, N. P. 2015. Validated TLC-Densitometry method for the determination of chlorogenic acid in coffee leaf extract.
Setiawan, N. & Febriyanti, A., 2017. Antioxidant Activity of Ethanol Extract and Fractions of Tuber (Eleutherine palmifolia (L.) Merr) Using DPPH Method. Journal of Current Pharmaceutical Sciences, 1(1), pp.2095-2598.
Molyneux, P., 2004. The use of the stable free radical diphenylpicryl-hydrazyl (DPPH) for estimating antioxidant activity. Songklanakarin Journal of Science and Technology, 26(2), pp.211-219.
Hidayati, D., Arifin, I., Antika, Y., Firdaus, A. & Ardian, N.K., 2017. Antioxidant Activity Testing of Extracts and Fractions of Mas Banana Heart (Musa acuminata Colla) Using the DPPH Method. Pharmacy Journal, 14(1), pp.75-85.
Alishlah, T., Mun'im, A. & Jufri, M., 2024. Tyrosinase Inhibition and Antioxidant Activity Testing of Mulberry Roots Extract (Morus alba) with Green Extraction Method as Brightening Skin Agent. JOPS (Journal of Pharmacy and Science), 7(2), pp.41-48. DOI: https://doi.org/10.36341/jops.v7i2.4699
Department of Health of the Republic of Indonesia. 2017. Farmakope Herbal Indonesia, Edisi II, Departemen Kesehatan Republik Indonesia, Jakarta, Indonesia.
Handoyo, D.L.Y. & Pranoto, M.E., 2020. The effect of variations in drying temperature on the production of neem leaf simplicia (Azadirachta indica). Jurnal Farmasi Tinctura, 1(2), pp.45-54. DOI: https://doi.org/10.35316/tinctura.v1i2.988
Alishlah, T., Mun’im, A., & Jufri, M. 2019. Optimization of urea-glycerin-based NADES-UAE for oxyresveratrol extraction from Morus alba roots for preparation of skin whitening lotion. Journal of Young Pharmacists, 11(2), pp.155-160 DOI: https://doi.org/10.5530/jyp.2019.11.33
Arumugam, M.K., Paal, M.C., Donohue Jr, T.M., Ganesan, M., Osna, N.A. & Kharbanda, K.K., 2021. Beneficial effects of betaine: a comprehensive review. Biology, 10(6), p.456. DOI: https://doi.org/10.3390/biology10060456
Ballantyne, B. & Snellings, W.M. 2007. Triethylene glycol HO(CH2CH2O)3H. Journal of Applied Toxicology: An International Journal, 27(3), pp.291-299. DOI: https://doi.org/10.1002/jat.1220
Galema, S.A., 1997. Microwave chemistry. Chemical Society Reviews, 26(3), pp.233-238. DOI: https://doi.org/10.1039/cs9972600233
Kratchanova, M., Pavlova, E. & Panchev, I., 2004. The effect of microwave heating of fresh orange peels on the fruit tissue and quality of extracted pectin. Carbohydrate Polymers, 56, pp.181-186. DOI: https://doi.org/10.1016/j.carbpol.2004.01.009
Wang, L. & Weller, C.L., 2006. Recent advances in the extraction of nutraceuticals from plants. Trends in Food Science & Technology, 17(6), pp.300-312. DOI: https://doi.org/10.1016/j.tifs.2005.12.004
Brittany, H., 2002. Microwave Synthesis: Chemistry at the Speed of Light. Matthews: CEM Publishing, pp.11-27.
Wang T., Xu W.-J., Wang S.-X., Kou P., Wang P., Wang X.-Q., Fu Y.-J. 2017. Integrated and sustainable separation of chlorogenic acid from blueberry leaves by deep eutectic solvents coupled with an aqueous two-phase system. Food Bioprod. Process;105:205–214. doi: 10.1016/j.fbp.2017.07.010. DOI: https://doi.org/10.1016/j.fbp.2017.07.010
Peng X., Duan M.-H., Yao X.-H., Zhang Y.-H., Zhao C.-J., Zu Y.-G., Fu Y.-J. 2016. Green extraction of five target phenolic acids from Lonicerae japonicae Flos with deep eutectic solvent. Sep. Purif. Technol;157:249–257. doi: 10.1016/j.seppur.2015.10.065. DOI: https://doi.org/10.1016/j.seppur.2015.10.065
Misan A., Nađpal J., Stupar A., Pojić M., Mandić A., Verpoorte R., Choi Y.H. 2022. The perspectives of natural deep eutectic solvents in the agri-food sector. Crit. Rev. Food Sci. Nutr. 60:2564–2592. doi: 10.1080/10408398.2019.1650717 DOI: https://doi.org/10.1080/10408398.2019.1650717
Hikmawanti NPE, Ramadon D, Jantan I, and Mun'im A. 2021. Natural Deep Eutectic Solvents (NADES): Phytochemical Extraction Performance Enhancer for Pharmaceutical and Nutraceutical Product Development. Plants (Basel), 10(10):2091. doi: 10.3390/plants10102091. DOI: https://doi.org/10.3390/plants10102091
Anita, A.K., 2024. The effect of different extraction methods on the polyphenol content of white tea leaves (Camellia sinensis). Jurnal Teknologi Pangan dan Ilmu Pertanian (JIPANG), 6(02), pp.48-55. DOI: https://doi.org/10.36526/jipang.v6i02.4964
Farah, A. & Donangelo, C.M., 2006. Phenolic compounds in coffee. Brazilian Journal of Plant Physiology, 18, pp.23-36. DOI: https://doi.org/10.1590/S1677-04202006000100003
Ikram M., Park T.J., Ali T., Kim M.O. Antioxidant and Neuroprotective Effects of Caffeine against Alzheimer’s and Parkinson’s Disease: Insight into the Role of Nrf-2 and A2AR Signaling. Antioxidants. 2020;9:902. doi: 10.3390/antiox9090902 DOI: https://doi.org/10.3390/antiox9090902
Dziki, D., Gawlik-Dziki, U., Pecio, L., Różyło, R., Świeca, M., Krzykowski, A., Rudy, S. 2015. Ground green coffee beans as a functional food supplement – Preliminary study. LWT - Food Science and Technology, 63 (1), 691-699. DOI: https://doi.org/10.1016/j.lwt.2015.03.076
Sik, B., Székelyhidi, R., Lakatos, E., and Ajtony, Z. 2024. Using natural deep eutectic solvents for the extraction of antioxidant compounds from cornelian cherry (Cornus mas L.) fruits. Green Analytical Chemistry, 11, 100154. DOI: https://doi.org/10.1016/j.greeac.2024.100154
Pavlić, B., Mrkonjić, Ž., Teslić, N., Kljakić, A. C., Pojić, M., Mandić, A., Stupar, A., Santos, F., Duarte, A. R. C., and Mišan, A. 2022. Natural Deep Eutectic Solvent (NADES) Extraction Improves Polyphenol Yield and Antioxidant Activity of Wild Thyme (Thymus serpyllum L.) Extracts. Molecules, 27(5), 1508. https://doi.org/10.3390/molecules27051508 DOI: https://doi.org/10.3390/molecules27051508
Guo, X., Ren, T., Li, H., Lu, Q., and Di X. 2024. Antioxidant activity and mechanism exploration for microwave-assisted extraction of flavonoids from Scutellariae Radix using natural deep eutectic solvent. Microchemical Journal, 200, 110300. DOI: https://doi.org/10.1016/j.microc.2024.110300
Susanto, A., Ratnaningtyas, I. & Ekowati, N., 2018. Antioxidant activity of chicken thigh mushroom (Coprinus comatus) fruit body extract with different solvents. Majalah Ilmiah Biologi Biosfera: A Scientific Journal, 35(2), pp.63-68.