Efektivitas Kombinasi Agen Pendeplesi Glutathione (GSH) dan Inhibitor Glutathione S-Transferase (GST) pada Resistensi Cisplatin terhadap Sel Kanker: Systematic Literature Review
Isi Artikel Utama
Page: 694-705
Abstrak
Cisplatin adalah salah satu agen kemoterapi berbasis platinum yang digunakan untuk terapi berbagai jenis kanker. Namun, penggunaan cisplatin sebagai agen kemoterapi dibatasi oleh resitensi obat dan efek samping yang terjadi karena terbentuknya metabolit inaktif dari reaksi konjugasi antara cisplatin dengan GST dan GST. Sehingga, Glutathion (GSH) dan Glutathion S-Transferase (GST) berperan penting dalam pengendalian resistensi cisplatin. Penelitian ini bertujuan untuk mengkaji penggunaan kombinasi cisplatin dengan agen pendeplesi GSH dan inhibitor GST dalam mengatasi atau mengurangi resistensi cisplatin pada berbagai jenis sel kanker secara in vitro, serta meningkatkan aktivitas sitotoksik cisplatin. Penelitian ini dilakukan menggunakan metode systematic literature review dengan penelusuran pustaka terhadap dua database internasional, PubMed dan Science Direct dengan interval tahun publikasi 2013-2024. Dari 15 jurnal terpilih, terdapat berbagai agen pendeplesi GSH dan GST yang mampu meningkatkan efek sitotoksik terhadap cisplatin yang dianalisis berdasarkan data jumlah GSH dan GST dalam sel terukur dan jumlah sel hidup (% viabilitas sel) yang memberikan hasil penurunan yang signifikan. Hasil dari penelitian ini diharapkan dapat memberikan gambaran terkait pengembangan terapi pada kanker dengan penggunaan cisplatin sebagai obat kemoterapi.
Unduhan
Rincian Artikel

Artikel ini berlisensiCreative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Referensi
Dasari S, Bernard Tchounwou P. Cisplatin in cancer therapy: Molecular mechanisms of action. Eur J Pharmacol 2014;740:364–78. https://doi.org/10.1016/j.ejphar.2014.07.025. DOI: https://doi.org/10.1016/j.ejphar.2014.07.025
Gold JM, Raja A. Cisplatin 2023.
Dasari S, Njiki S, Mbemi A, Yedjou CG, Tchounwou PB. Pharmacological Effects of Cisplatin Combination with Natural Products in Cancer Chemotherapy. Int J Mol Sci 2022;23:1–25. https://doi.org/10.3390/ijms23031532. DOI: https://doi.org/10.3390/ijms23031532
Hu S, Leblanc AF, Gibson AA, Hong KW, Kim JY, Janke LJ, et al. Identification of OAT1/OAT3 as Contributors to Cisplatin Toxicity. Clin Transl Sci 2017;10:412 20. https://doi.org/10.1111/cts.12480. DOI: https://doi.org/10.1111/cts.12480
Wen X, Buckley B, McCandlish E, Goedken MJ, Syed S, Pelis R, et al. Transgenic expression of the human MRP2 transporter reduces cisplatin accumulation and nephrotoxicity in Mrp2-Null mice. American Journal of Pathology 2014;184:1299 308. https://doi.org/10.1016/j.ajpath.2014.01.025. DOI: https://doi.org/10.1016/j.ajpath.2014.01.025
Sprowl J, Doorn L van, Gerven L van, Bruijn D, Li L, Gibson A, et al. Conjunctive therapy of cisplatin with the OCT2 inhibitor cimetidine 2013;94:585 92. https://doi.org/10.1038/clpt.2013.145.Conjunctive. DOI: https://doi.org/10.1038/clpt.2013.145
Karasawa T, Steyger SP. An integrated view of cisplatin-induced nephrotoxicity and ototoxicity. Toxicol Lett 2015;237:219 27. https://doi.org/10.1016/j.toxlet.2015.06.012.An. DOI: https://doi.org/10.1016/j.toxlet.2015.06.012
Potęga A. Glutathione-Mediated Conjugation of Anticancer Drugs: An Overview of Reaction Mechanisms and Biological Significance for Drug Detoxification and Bioactivation. Molecules 2022;27. https://doi.org/10.3390/molecules27165252. DOI: https://doi.org/10.3390/molecules27165252
Chen SH, Chang JY. New insights into mechanisms of cisplatin resistance: From tumor cell to microenvironment. Int J Mol Sci 2019;20. https://doi.org/10.3390/ijms20174136. DOI: https://doi.org/10.3390/ijms20174136
Galluzzi L, Vitale I, Michels J, Brenner C, Szabadkai G, Harel-Bellan A, et al. Systems biology of cisplatin resistance: Past, present, and future. Cell Death Dis 2014;5:e1257-18. https://doi.org/10.1038/cddis.2013.428. DOI: https://doi.org/10.1038/cddis.2013.428
Lugones Y, Loren P, Salazar LA. Cisplatin Resistance: Genetic and Epigenetic Factors Involved. Biomolecules 2022;12:1–12. https://doi.org/10.3390/biom12101365. DOI: https://doi.org/10.3390/biom12101365
Chen HHW, Kuo MT. Role of Glutathione in Regulation of Cisplatin Resistance in Cancer Chemotherapy 2010;2010. https://doi.org/10.1155/2010/430939. DOI: https://doi.org/10.1155/2010/430939
Tewari-Singh N, Agarwal C, Huang J, Day BJ, White CW, Agarwal R. Efficacy of glutathione in ameliorating sulfur mustard analog-induced toxicity in cultured skin epidermal cells and in SKH-1 mouse skin in vivo. Journal of Pharmacology and Experimental Therapeutics 2011;336:450 9. https://doi.org/10.1124/jpet.110.173708. DOI: https://doi.org/10.1124/jpet.110.173708
Singh RR, Reindl KM. Glutathione s-transferases in cancer. Antioxidants 2021;10. https://doi.org/10.3390/antiox10050701. DOI: https://doi.org/10.3390/antiox10050701
Priya S, Nigam A, Bajpai P, Kumar S. Diethyl maleate inhibits MCA+TPA transformed cell growth via modulation of GSH, MAPK, and cancer pathways. Chem Biol Interact 2014;219:37 47. https://doi.org/10.1016/j.cbi.2014.04.018. DOI: https://doi.org/10.1016/j.cbi.2014.04.018
Li Q, Zhan M, Chen W, Zhao B, Yang K, Yang J, et al. Phenylethyl isothiocyanate reverses cisplatin resistance in biliary tract cancer cells via glutathionylation-dependent degradation of Mcl-1. Oncotarget 2016;7:10271–82. https://doi.org/10.18632/oncotarget.7171. DOI: https://doi.org/10.18632/oncotarget.7171
Kim EH, Jang H, Roh JL. A novel polyphenol conjugate sensitizes cisplatin-resistant head and neck cancer cells to cisplatin via Nrf2 inhibition. Mol Cancer Ther 2016;15:2620 9. https://doi.org/10.1158/1535-7163.MCT-16-0332. DOI: https://doi.org/10.1158/1535-7163.MCT-16-0332
Kim EH, Baek S, Shin D, Lee J, Roh JL. Hederagenin Induces Apoptosis in Cisplatin-Resistant Head and Neck Cancer Cells by Inhibiting the Nrf2-ARE Antioxidant Pathway. Oxid Med Cell Longev 2017;2017. https://doi.org/10.1155/2017/5498908. DOI: https://doi.org/10.1155/2017/5498908
Deng H, Ma J, Liu Y, He P, Dong W. Combining α-Hederin with cisplatin increases the apoptosis of gastric cancer in vivo and in vitro via mitochondrial-related apoptosis pathway. Biomedicine and Pharmacotherapy 2019;120:109477. https://doi.org/10.1016/j.biopha.2019.109477. DOI: https://doi.org/10.1016/j.biopha.2019.109477
Jia Y, Zhang C, Zhou L, Xu H, Shi Y, Tong Z. Micheliolide overcomes KLF4-mediated cisplatin resistance in breast cancer cells by downregulating glutathione. Onco Targets Ther 2015;8:2319 27. https://doi.org/10.2147/OTT.S88661. DOI: https://doi.org/10.2147/OTT.S88661
Roh J-L, Kim EH, Jang H, Shin D. Nrf2 inhibition reverses the resistance of cisplatin-resistant head and neck cancer cells to artesunate-induced ferroptosis. Redox Biol 2017;11:254 62. https://doi.org/10.1016/j.redox.2016.12.010. DOI: https://doi.org/10.1016/j.redox.2016.12.010
Hsu H, Hwang P. Clinical applications of fucoidan in translational medicine for adjuvant cancer therapy. Clin Transl Med 2019;8:1 18. https://doi.org/10.1186/s40169-019-0234-9. DOI: https://doi.org/10.1186/s40169-019-0234-9
Allocati N, Masulli M, Di Ilio C, Federici L. Glutathione transferases: Substrates, inhibitors and pro-drugs in cancer and neurodegenerative diseases. Oncogenesis 2018;7. https://doi.org/10.1038/s41389-017-0025-3. DOI: https://doi.org/10.1038/s41389-017-0025-3
Mignani S, El Brahmi N, El Kazzouli S, Eloy L, Courilleau D, Caron J, et al. A novel class of ethacrynic acid derivatives as promising drug-like potent generation of anticancer agents with established mechanism of action. Eur J Med Chem 2016;122:656 73. https://doi.org/10.1016/j.ejmech.2016.05.063. DOI: https://doi.org/10.1016/j.ejmech.2016.05.063
Johnstone CT, Suntharalingam K, Lippard JS. The Next Generation of Platinum Drugs: Targeted Pt(II) Agents, Nanoparticle Delivery, and Pt(IV) Prodrugs. Physiol Behav 2016;116:3436 86. https://doi.org/10.1021/acs.chemrev.5b00597.The. DOI: https://doi.org/10.1021/acs.chemrev.5b00597
Li S, Li C, Jin S, Liu J, Xue X, Eltahan AS, et al. Overcoming resistance to cisplatin by inhibition of glutathione S-transferases (GSTs) with ethacraplatin micelles in vitro and in vivo. Biomaterials 2017;144:119–29. https://doi.org/10.1016/j.biomaterials.2017.08.021. DOI: https://doi.org/10.1016/j.biomaterials.2017.08.021
Luisi G, Mollica A, Carradori S, Lenoci A, De Luca A, Caccuri AM. Nitrobenzoxadiazole-based GSTP1-1 inhibitors containing the full peptidyl moiety of (pseudo)glutathione. J Enzyme Inhib Med Chem 2016;31:924 30. https://doi.org/10.3109/14756366.2015.1070845. DOI: https://doi.org/10.3109/14756366.2015.1070845
De Luca A, Hartinger CG, Dyson PJ, Lo Bello M, Casini A. A new target for gold(I) compounds: Glutathione-S-transferase inhibition by auranofin. J Inorg Biochem 2013;119:38 42. https://doi.org/10.1016/j.jinorgbio.2012.08.006. DOI: https://doi.org/10.1016/j.jinorgbio.2012.08.006
Harshbarger W, Gondi S, Ficarro SB, Hunter J, Udayakumar D, Gurbani D, et al. Structural and biochemical analyses reveal the glutathione S-transferase Pi 1 inhibition mechanism by the anti-cancer compound piperlongumine. Journal of Biological Chemistry 2017; 292:11220. https://doi.org/10.1074/jbc.M116.750299. DOI: https://doi.org/10.1074/jbc.M116.750299
Nagane M, Kanai E, Shibata Y, Shimizu T, Yoshioka C, Maruo T, et al. Sulfasalazine, an inhibitor of the cystine-glutamate antiporter, reduces DNA damage repair and enhances radiosensitivity in murine B16F10 melanoma. PLoS One 2018;13:1–19. https://doi.org/10.1371/journal.pone.0195151. DOI: https://doi.org/10.1371/journal.pone.0195151
Ebeed SA, Sadek NA, Zaher ER, Mahmoud MM, Nabil G, Elbenhawy SA. Role of MRP-1 and GST-Pi in MDR and their inhibition by indomethacin in AML. Alexandria Journal of Medicine 2017;53:251 9. https://doi.org/10.1016/j.ajme.2016.04.002. DOI: https://doi.org/10.1016/j.ajme.2016.04.002
Cao H, Sethumadhavan K, Cao F, Wang TTY. Gossypol decreased cell viability and down-regulated the expression of several genes in human colon cancer cells. Sci Rep 2021;11:1–16. https://doi.org/10.1038/s41598-021-84970-8. DOI: https://doi.org/10.1038/s41598-021-84970-8
Guneidy RA, Zaki ER, Saleh NS, Shokeer A. Inhibition of human glutathione transferase by catechin and gossypol: comparative structural analysis by kinetic properties, molecular docking, and their efficacy on the viability of human MCF-7 cells. The Journal of Biochemistry 2024;175:69 83. DOI: https://doi.org/10.1093/jb/mvad070