Isi Artikel Utama

Adhitama Asmal
Riska Yuli Nurvianthi

Page: 2940-2950

Abstrak

Terapi metformin pada Diabetes Melitus Tipe 2 memiliki keterbatasan akibat kelarutan air yang sangat rendah dan bioavailabilitas oral yang sedang, sehingga dapat menurunkan efektivitas klinisnya. Sediaan tablet dispersibel juga memberikan keuntungan bagi pasien geriatri yang mengalami kesulitan menelan. Penelitian ini bertujuan memformulasi dan mengarakterisasi tablet dispersibel berbasis nanopartikel metformin untuk meningkatkan disolusi dan kestabilan fisikokimia awal. Nanopartikel metformin dipreparasi melalui metode nanopresipitasi dan dikarakterisasi berdasarkan ukuran partikel, polidispersitas, potensial zeta, serta sifat padatan menggunakan XRD dan DSC, sementara morfologi diamati dengan SEM. Nanopartikel kemudian dikompresi menjadi tablet dispersibel dan dievaluasi sesuai standar farmakope. Nanopartikel metformin yang dihasilkan memiliki ukuran rata-rata 180 ± 20 nm (PDI 0,25; potensial zeta −25 mV). Analisis XRD dan DSC menunjukkan terjadinya amorfisasi parsial, diperkuat oleh citra SEM yang memperlihatkan partikel sferis dengan permukaan halus dan distribusi merata. Tablet dispersibel memenuhi persyaratan kompendial dan menunjukkan peningkatan disolusi yang nyata dibandingkan tablet konvensional, dengan pelepasan mencapai 88% pada menit ke-30. Setelah uji stabilitas dipercepat pada 40 °C/75% RH, kadar tetap ≥95% dan tidak terdapat perubahan signifikan pada profil disolusi (p > 0,05). Sebagai kesimpulan, tablet dispersibel berbasis nanopartikel ini berhasil meningkatkan disolusi metformin secara in vitro dan mempertahankan kestabilan fisikokimia pada tahap awal, sehingga mendukung pengembangan lebih lanjut dalam studi bioavailabilitas dan peningkatan kepatuhan penerimaan terapi pada pasien.

Unduhan

Data unduhan belum tersedia.

Rincian Artikel

Cara Mengutip
Asmal , A., & Nurvianthi , R. Y. (2025). Formulasi dan Karakterisasi Tablet Dispersibel Berbasis Nanopartikel untuk Meningkatkan Disolusi dan Stabilitas Formulasi Metformin. Journal of Pharmaceutical and Sciences, 8(4), 2940–2950. https://doi.org/10.36490/journal-jps.com.v8i4.1172
Bagian
Original Articles

Referensi

Association AD. Standards of medical care in diabetes—2023. Diabetes Care 2023;46:S1–154. https://doi.org/10.2337/dc23-S001. DOI: https://doi.org/10.2337/dc23-S001

Lalau JD, Arnouts P, Sharif A, De Broe ME, Morlion L. Metformin and other antidiabetic drugs in renal failure patients. Kidney Int 2015;87:308–22. DOI: https://doi.org/10.1038/ki.2014.19

Bailey CJ. Metformin: historical overview. Diabetologia 2017;60:1566–76. https://doi.org/10.1007/s00125-017-4318-z. DOI: https://doi.org/10.1007/s00125-017-4318-z

Andronescu E, Grumezescu AM. Nanostructures for Drug Delivery. Amsterdam: Elsevier; 2017.

Noyes AA, Whitney WR. The rate of solution of solid substances in their own solutions. J Am Chem Soc 1897;19:930–4. https://doi.org/10.1021/ja02086a003. DOI: https://doi.org/10.1021/ja02086a003

Kesehatan BKP. Survei Kesehatan Indonesia (SKI) 2023. Jakarta: Kementerian Kesehatan Republik Indonesia; 2023.

Liu F, Ranmal S, Batchelor HK, Orlu-Gul M, Ernest TB, Thomas IW, et al. Patient-centered pharmaceutical design to improve acceptability of medicines: similarities and differences in paediatric and geriatric populations. Drugs 2014;74:1871–89. https://doi.org/10.1007/s40265-014-0297-2. DOI: https://doi.org/10.1007/s40265-014-0297-2

Kouchak M, Bahmandar R, Bavarsad N. Preparation and evaluation of metformin hydrochloride nanoparticles using different polymers. Res Pharm Sci 2018;13:404–13.

Mishra B, Patel BB, Tiwari S. Colloidal drug delivery systems for improved oral bioavailability of poorly water-soluble drugs. Drug Deliv 2010;17:457–67.

Harmonisation IC for. Stability testing of new drug substances and products (Q1A(R2)). Geneva: ICH; 2003.

Al-Zoubi N. Formulation and evaluation of nanoparticulate drug delivery systems for oral antidiabetic agents. Int J Appl Pharm 2019;11:42–9.

Kumar S, Bhanjana G, Verma RK, Dhingra D, Dilbaghi N, Kim K-H. Metformin-loaded alginate nanoparticles as an effective antidiabetic agent for controlled drug release. J Pharm Pharmacol 2017;69:143–50. DOI: https://doi.org/10.1111/jphp.12672

Agarwal P, Bharath KS, Jain SK, Kumar A, Pandey E, Ghosh T, et al. Formulation and in vitro evaluation of metformin-loaded nanoparticles for enhanced oral bioavailability. Biochem Cell Arch 2024.

Shah TM. Advancing Formulation Science in Diabetes and Migraine: From Conventional Therapies to Precision Drug Delivery n.d.

Cornilă A, Iurian S, Tomuță I, Porfire A. Orally dispersible dosage forms for paediatric use: Current knowledge and development of nanostructure-based formulations. Pharmaceutics 2022;14:1621. DOI: https://doi.org/10.3390/pharmaceutics14081621

Vishvakarma V, Kaur M, Nagpal M, Arora S. Role of nanotechnology in taste masking: recent updates. Curr Drug Res Rev Former Curr Drug Abus Rev 2023;15:1–14. DOI: https://doi.org/10.2174/2589977514666220526091259

Sharifi-Rad J, Quispe C, Butnariu M, Rotariu LS, Sytar O, Sestito S, et al. Chitosan nanoparticles as a promising tool in nanomedicine with particular emphasis on oncological treatment. Cancer Cell Int 2021;21:318. DOI: https://doi.org/10.1186/s12935-021-02025-4

Prakash D, Arora V, Dewangan HK. A Systematic Review of the Application of Natural Polymers in the Formulation of ORO-Dispersible Tablet. Int J App Pharm 2023;15:27–36. DOI: https://doi.org/10.22159/ijap.2023v15i5.48183

Trivedi R, Chatterjee B, Kalave S, Pandya M. Role of fine silica as amorphous solid dispersion carriers for enhancing drug load and preventing recrystallization-a comprehensive review. Curr Drug Deliv 2023;20:694–707. DOI: https://doi.org/10.2174/1567201819666220721111852

Depkes R. Indonesia. 1995.

Gite S, Chogale M, Patravale V. Development and validation of a discriminating dissolution method for atorvastatin delayedrelease nanoparticles using a flow-through cell: A comparative study using USP apparatus 4 and 1. Dissolution Technol 2016;23:14–20. DOI: https://doi.org/10.14227/DT230216P14

Alhagiesa AW, Ghareeb MM. Formulation and evaluation of nimodipine nanoparticles incorporated within orodispersible tablets. Int J Drug Deliv Technol 2020;10:547–52.

Danaei M, Dehghankhold M, Ataei S, Hasanzadeh Davarani F, Javanmard R, Dokhani A, et al. Impact of particle size and polydispersity index on the clinical applications of lipidic nanocarrier systems. Pharmaceutics 2018;10:57. https://doi.org/10.3390/pharmaceutics10020057. DOI: https://doi.org/10.3390/pharmaceutics10020057

Sharma P, Gupta R, Singh A. Nanoparticle-based formulations for improved solubility and dissolution of antidiabetic drugs. J Drug Deliv Sci Technol 2017;39:210–8.

Patel K, Mehta M, Patel J. Advances in dispersible tablet formulations of metformin: dissolution enhancement strategies. Eur J Pharm Biopharm 2021;164:13–9. https://doi.org/10.1016/j.ejpb.2021.04.009. DOI: https://doi.org/10.1016/j.ejpb.2021.04.009