Antibacterial Activity of Dendrophthoe pentandra Mistletoe Leaf Extract on Citrus microcarpa Bunge Plants Against Mycobacterium smegmatis, Escherichia coli and Salmonella typhi
Main Article Content
Page: 1740-1753
Abstract
Diseases caused by bacteria infections are renowned for hurting human health and may become fatal when not treated with appropriate medical therapy. Meanwhile, several bacteria, including Mycobacterium smegmatis, Escherichia coli, and Salmonella typhi, are resistant to numerous antibiotics. Therefore, this study aimed to find new compounds from plants with antibacterial potential. The results showed that based on phytochemical screening, Dendrophthoe pentandra mistletoe leaf on Citrus microcarpa Bunge plants had compounds with antibacterial activity, namely alkaloids, flavonoids, tannins, and phenolics. According to Gas Chromatography-Mass Spectrometry (GC-MS) analysis, eight compounds have antibacterial properties, namely 2-Myristynoyl pantetheine; 2H-Indeno[1,2-b]furan-2-one, 3,3a,4,5,6,7,8,8b-octahydro-8,8-dimethyl; Acetamide, N-methyl-N-[4-(3-hydroxypyrrolidinyl)-2-butynyl]-; Ethyl iso-allocholate; a-D-Glucopyranoside, methyl 2-(acetylamino)-2-deoxy-3-O-(trimethylsilyl)-, cyclic methylboronate; tert-Hexadecanethiol; Sarreroside; and d-Mannose. D. pentandra mistletoe leaf extract had a better effect or activity on inhibiting the growth of M. smegmatis than E. coli and S. typhi. It was concluded that D. pentandra mistletoe leaf on Citrus microcarpa Bunge plants had antibacterial activity.
Downloads
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
References
Teklu T, Wondale B, Taye B, Hailemariam M, Bekele S, Tamirat M, et al. Differences in plasma proteomes for active tuberculosis, latent tuberculosis and non-tuberculosis mycobacterial lung disease patients with and without ESAT-6/CFP10 stimulation. Proteome Sci 2020;18:1–14. https://doi.org/10.1186/s12953-020-00165-5. DOI: https://doi.org/10.1186/s12953-020-00165-5
Diseases BMCI. Abstracts from the International Science Symposium on HIV and Infectious Diseases (ISSHID 2019): Infectious diseases : Chennai, India. 12-14 October 2019. BMC Infect Dis 2020;20:324. https://doi.org/10.1186/s12879-020-05038-y. DOI: https://doi.org/10.1186/s12879-020-05038-y
Fallahzadeh H, Khazaei Z, Najafi ML, Pordanjani SR, Goodarzi E. Distribution incidence, mortality of tuberculosis and human development index in Iran: estimates from the global burden of disease study 2019. BMC Public Health 2023;23:1–12. https://doi.org/10.1186/s12889-023-17114-4. DOI: https://doi.org/10.1186/s12889-023-17114-4
Zhao C, Liu Z. A case report and literature review: Mycobacterium leprae infection diagnosed by metagenomic next-generation sequencing of cerebrospinal fluid. BMC Infect Dis 2024;24:1–7. https://doi.org/10.1186/s12879-024-09473-z. DOI: https://doi.org/10.1186/s12879-024-09473-z
Yuldan F, Purwanto A. ITGBM Pembentukan Kader Pengawas Minum Obat (PMO) pada Penderita TB. J Pengabdi Siliwangi 2018;4:8–12. DOI: https://doi.org/10.37058/jsppm.v4i1.491
Widianto CS, Pambudi YS. Analisa Cemaran Eschericia Coli dan Salmonella SP Serta Kualitas Fisik Tahu ditinjau dari Sanitasi Pabrik Tahu di Sentra Industri Tahu Krajan Mojosongo Surakarta. Intelektiva J Ekon Sos Hum Anal 2021;03:1–11.
Kipkirui E, Koech M, Ombogo A, Kirera R, Ndonye J, Kipkemoi N, et al. Molecular characterisation of enterotoxigenic Escherichia coli toxins and colonisation factors in children under five years with acute diarrhoea attending Kisii Teaching and Referral Hospital, Kenya. Trop Dis Travel Med Vaccines 2021;7:1–7. https://doi.org/10.1186/s40794-021-00157-z. DOI: https://doi.org/10.1186/s40794-021-00157-z
Sikorski MJ, Hazen TH, Desai SN, Nimarota-Brown S, Tupua S, Sialeipata M, et al. Persistence of Rare Salmonella Typhi Genotypes Susceptible to First-Line Antibiotics in the Remote Islands of Samoa. MBio 2022;13. https://doi.org/10.1128/mbio.01920-22. DOI: https://doi.org/10.1128/mbio.01920-22
Kementerian Kesehatan RI. Direktorat Pencegahan dan Pengendalian Penyakit Menular Kementerian Kesehatan. Lap Kinerja Direktorat P2PM 2023;1:1–122.
Direktur Pencegahan dan Pengendalian Penyakit Menular Kementerian Kesehatan RI. Laporan Kinerja Direktorat P2PM Kemenkes RI. vol. 1. 2024.
Gunasingam N. Mycobacterium Smegmatis: Exploring its Relation with Tuberculosis 2023;13:1000345. https://doi.org/10.35248/2161-1068.23.13.345.Citation.
Sparks IL, Derbyshire KM, Jacobs WR, Morita YS. Mycobacterium smegmatis: The Vanguard of Mycobacterial Research. J Bacteriol 2023;205. https://doi.org/10.1128/jb.00337-22. DOI: https://doi.org/10.1128/jb.00337-22
Abdllah MS, Muhammad A. Antibacterial Activity of Leaf and Stem Bark Extracts of Adansonia Digitata Against Escherichia Coli and Salmonella Typhi Grown in Potiskum, Yobe State Nigeria. Ann Microbiol Infect Dis 2019;2:31–7. DOI: https://doi.org/10.22259/2637-5346.0201005
Barathe P, Kaur K, Reddy S, Shriram V, Kumar V. Antibiotic pollution and associated antimicrobial resistance in the environment. J Hazard Mater Lett 2024;5:100105. https://doi.org/10.1016/j.hazl.2024.100105. DOI: https://doi.org/10.1016/j.hazl.2024.100105
Putri CI, Wardhana MF, Andrifianie F, Iqbal M. Literature Review: Kejadian Resistensi Pada Penggunaan Antibiotik. Medula 2023;13:219–25.
Kumar S, Khan HM, Khan MA, Jalal M, Ahamad S, Shahid M, et al. Broad-spectrum antibacterial and antibiofilm activity of biogenic silver nanoparticles synthesized from leaf extract of Phyllanthus niruri. J King Saud Univ - Sci 2023;35:102904. https://doi.org/10.1016/j.jksus.2023.102904. DOI: https://doi.org/10.1016/j.jksus.2023.102904
Mardina V, Helmalia F, Fadhliani F, Lendawati L. Uji Aktivitas Anti Bakteri Ekstrak Metanol Daun Baccaurea Macrocarpa Terhadap Escherichia Coli Dan Salmonella Typhi. Konserv Hayati 2021;17:10–6. https://doi.org/10.33369/hayati.v17i1.12879. DOI: https://doi.org/10.33369/hayati.v17i1.12879
Kichu M, Malewska T, Akter K, Imchen I, Harrington D, Kohen J, et al. An ethnobotanical study of medicinal plants of Chungtia village, Nagaland, India. J Ethnopharmacol 2015;166:5–17. https://doi.org/https://doi.org/10.1016/j.jep.2015.02.053. DOI: https://doi.org/10.1016/j.jep.2015.02.053
Mirza, Amanah S, Sadono D. Tingkat Kedinamisan Kelompok Wanita Tani dalam Mendukung Keberlanjutan Usaha Tanaman Obat Keluarga di Kabupaten Bogor, Jawa Barat 2017;13:181–93.
Arini DID. The Local Knowledge of Community in North Sulawesi on Forest Tress Used as A Traditional Medicine. J Masy Budaya 2017;19:161–74. DOI: https://doi.org/10.14203/jmb.v19i2.444
Rompas VF, Mamuaja CF, Suryanto E. Ekstraksi Pektin dari Lemon Cui (Citrus microcarpa Bunge) dan Aplikasinya Pada Pembuatan Selai Nanas. J Ilmu Dan Teknol Pangan 2016;4:29–36.
Ilahi MR, N.S. WV, Homenta H. Uji Dayahambat Air Perasan Buah Lemon Cui (Citrus Microcarpabunge) Terhadap Pertumbuhan Candida Albicans Yang Diisolasi Dari Plat Gigi Tiruan Lepasan Akrilik. Pharmacon J Ilm Farm 2016;5:167–74.
Munadi R, Hasan T, Firdha T. Identifikasi Kandungan Kimia Buah Lemon Cui (Citrus microcarpa) Asal Ambon dan Uji Aktivitas sebagai Antioksidan. Cokroaminoto J … 2023;2:60–5.
Dika OO, Suryanto E, Momuat L. Karakterisasi Dan Aktivitas Antioksidan Serat Pangan Dari Tepung Kulit Lemon Cui (Citrus microcarpa). Chem Prog 2021;14:40–7. https://doi.org/10.35799/cp.14.1.2021.34129. DOI: https://doi.org/10.35799/cp.14.1.2021.34129
Arifin A, Suwitno N, Sartini S. Formulasi Dan Evaluasi Kestabilan Fisik Sediaan Masker Gel Peel-Off Dari Sari Buah Lemon Cui (Citrus microcarpa Bunge.). J Ilm Ibnu Sina Ilmu Farm Dan Kesehat 2023;8:206–15. https://doi.org/10.36387/jiis.v8i2.1349. DOI: https://doi.org/10.36387/jiis.v8i2.1349
Haryanta D. Mengenal Tumbuhan Benalu Pada Tanaman Hutan Kota Di Surabaya Penerbit Uwks Press. 2023.
Kurama GM, Maarisit W, Karundeng EZ, Potalangi NO. Uji Aktivitas Antibakteri Ekstrak Etanol Daun Benalu Langsat (Dendropthoe sp) Terhadap Bakteri Klebsiella Pneumoniae. Biofarmasetikal Trop 2020;3:27–33. https://doi.org/10.55724/j.biofar.trop.v3i2.281. DOI: https://doi.org/10.55724/j.biofar.trop.v3i2.281
Atina Yuliandari. Metabolite Profiling Daun Benalu Mangga (Dendrophthoe pentandra (L.) Miq.) Menggunakan UPLC- MS Dengan Analisis Data Multivariat PCA. 2017.
Gusungi, Desi E, Maarisit W, Hariyadi, Potalangi NO. Studi aktivitas antioksidan dan antikanker payudara (MCF-7) ekstrak etanol daun benalu langsat Dendrophthoe pentandra. Trop J Biopharm 2020;3:166–74. DOI: https://doi.org/10.55724/j.biofar.trop.v3i1.274
Tumbel SK, Hariyadi H, Tombuku JL, Tapehe Y. Uji Efektivitas Antidiabetes Ekstrak Daun Benalu Dendrophthoe petandra L. Pada Kayu Jawa Terhadap Tikus Putih Rattus norvegicus Yang Diinduksi Aloksan. Biofarmasetikal Trop 2020;3:92–6. https://doi.org/10.55724/j.biofar.trop.v3i1.262. DOI: https://doi.org/10.55724/j.biofar.trop.v3i1.262
Neman AI, Maarisit W, Karauwan F. Uji Ekstrak Etanol Daun Benalu Kersen (Dendropthoe Pentrandra L.) Terhadap Tikus Putih (Ratus Norvegicus) Sebagai Anti Inflamasi. Trop J Biopharm 2022;5:55–9. DOI: https://doi.org/10.55724/jbiofartrop.v5i1.369
Besin CSM, Kanter JW, Maarisit W, Tumbel SL, Pareta DN, Montolalu FM. Studi Aktivitas Antioksidan Dari Ekstrak Etanol Daun Benalu(Dendrophthoe pentandra(L.) Miq) Pada Tanaman Pala. Trop J Biopharm 2024;7:27–32. https://doi.org/doi.org/10.55724/jbiofartrop.v7i1.447. DOI: https://doi.org/10.55724/jbiofartrop.v7i1.447
Nigussie D, Davey G, Legesse BA, Fekadu A, Makonnen E. Antibacterial activity of methanol extracts of the leaves of three medicinal plants against selected bacteria isolated from wounds of lymphoedema patients. BMC Complement Med Ther 2021;21:1–10. https://doi.org/10.1186/s12906-020-03183-0. DOI: https://doi.org/10.1186/s12906-020-03183-0
Burton GP, Prescott TAK, Fang R, Lee MA. Regional variation in the antibacterial activity of a wild plant, wild garlic (Allium ursinum L.). Plant Physiol Biochem 2023;202:107959. https://doi.org/10.1016/j.plaphy.2023.107959. DOI: https://doi.org/10.1016/j.plaphy.2023.107959
Lelovic N, Mitachi K, Yang J, Lemieux MR, Ji Y, Kurosu M. Application of Mycobacterium smegmatis as a surrogate to evaluate drug leads against Mycobacterium tuberculosis. J Antibiot (Tokyo) 2020;73:780–9. https://doi.org/10.1038/s41429-020-0320-7. DOI: https://doi.org/10.1038/s41429-020-0320-7
Maarisit W, Untu SD, Lengkey YK, Mongi J, Kanter JW, Pareta DN, et al. Tropical Journal of Natural Product Research Marine Invertebrate Sponge Haliclona sp . 2022;6:1622–5. DOI: https://doi.org/10.26538/tjnpr/v6i10.10
Maarisit W, Untu SD, Lengkey YK, Lomban TC., Kanter JW, H Y, et al. Anti-Mycobacterial Activity of Polycarpine and Polycarpaurine A from an Indonesia Marine Ascidian Polycarpa sp. Trop J Nat Prod Reasearch 2023;7:4055–8. https://doi.org/www.doi.org/10.26538/tjnpr/v7i9.31. DOI: https://doi.org/10.26538/tjnpr/v7i9.7
Sambou CN, Pareta DN, Sambow S. Uji aktivitas ekstrak Daun Labu siam (Sechium edule Jacq. Swartz) sebagai antibakteri Mycobakterium smegmatis 2023;6:1297–302. DOI: https://doi.org/10.36490/journal-jps.com.v6i3.217
Lengkey YK, Mantiri DMH, Undap SL, Sanger G, Lua VW, Kondoy K, et al. The Antibacterial and Anti-Breast Cancer Activities of Caulerpa racemosa from the Minahasa Peninsula Water and North Sulawesi, Indonesia. Trop J Nat Prod Res 2024;8:7979–83. https://doi.org/10.26538/tjnpr/v8i8.7. DOI: https://doi.org/10.26538/tjnpr/v8i8.7
Chingwaru C, Bagar T, Chingwaru W. Aqueous extracts of Flacourtia indica, Swartzia madagascariensis and Ximenia caffra are strong antibacterial agents against Shigella spp., Salmonella typhi and Escherichia coli O157. South African J Bot 2020;128:119–27. https://doi.org/10.1016/j.sajb.2019.10.022. DOI: https://doi.org/10.1016/j.sajb.2019.10.022
Kanter J, Untu S. Uji Aktivitas Antibakteri Ekstrak Kulit Buah Tanaman Jengkol Pithecellobium jiringa Terhadap Pertumbuhan Bakteri Staphylococcus aureus dan Pseudomonas aeruginosa. Biofarmasetikal Trop 2019;2:170–9. https://doi.org/10.55724/jbiofartrop.v2i2.218. DOI: https://doi.org/10.55724/jbiofartrop.v2i2.218
Putri RA, Simbala HEI, Mpila DA. Uji Aktivitas Antibakteri Ekstrak Etanol Bawang Dayak (Eleutherine americana Merr) TERHADAP BAKTERI Staphylococcus aureus, Escherichia coli DAN Salmonella typhi. Pharmacon 2020;9:525. https://doi.org/10.35799/pha.9.2020.31360. DOI: https://doi.org/10.35799/pha.9.2020.31360
Kumakauw VV, Simbala HEI, Mansauda KLR. Aktivitas Antibakteri Ekstrak Etanol Daun Sesewanua (Clerodendron Squamatum Vahl.) terhadap Bakteri Staphylococcus aureus Escherichia coli dan Salmonella typhi. J MIPA 2020;9:86. https://doi.org/10.35799/jmuo.9.2.2020.28946. DOI: https://doi.org/10.35799/jmuo.9.2.2020.28946
Ita BN, Eduok SI. Antioxidant and Antibacterial Activity of Alkaloid Fractions of Tristemma hirtum P. Beauv. Medicine (Baltimore) 2020;4:4. DOI: https://doi.org/10.26538/tjnpr/v4i4.10
Zaoui S, Bahri F, Benhassaini H, Szumny A, Bentaiba K. Chemical Composition and Pharmacological Activities of Calamintha nepeta Essential Oil 2024;8:7079–105. DOI: https://doi.org/10.26538/tjnpr/v8i5.8
Taher MA, Laboni AA, Shompa SA, Rahman MM, Hasan MM, Hasnat H, et al. Bioactive compounds extracted from leaves of G. cyanocarpa using various solvents in chromatographic separation showed anti-cancer and anti-microbial potentiality in in silico approach. Chinese J Anal Chem 2023;51:100336. https://doi.org/10.1016/j.cjac.2023.100336. DOI: https://doi.org/10.1016/j.cjac.2023.100336
Mawalagedera SMUP, Callahan DL, Gaskett AC, Rønsted N, Symonds MRE. Combining Evolutionary Inference and Metabolomics to Identify Plants With Medicinal Potential. Front Ecol Evol 2019;7:1–11. https://doi.org/10.3389/fevo.2019.00267. DOI: https://doi.org/10.3389/fevo.2019.00267
Moloney MG. Natural Products as a Source for Novel Antibiotics. Trends Pharmacol Sci 2016;37:689–701. https://doi.org/10.1016/j.tips.2016.05.001. DOI: https://doi.org/10.1016/j.tips.2016.05.001
Bazaka K, Jacob M V., Chrzanowski W, Ostrikov K. Anti-bacterial surfaces: Natural agents, mechanisms of action, and plasma surface modification. RSC Adv 2015;5:48739–59. https://doi.org/10.1039/c4ra17244b. DOI: https://doi.org/10.1039/C4RA17244B
Gupta P, Bhatter P, D'souza D, Tolani M, Daswani P, Tetali P, et al. Evaluating the anti Mycobacterium tuberculosis activity of Alpinia galanga (L.) Willd. axenically under reducing oxygen conditions and in intracellular assays. BMC Complement Altern Med 2014;14:1–8. https://doi.org/10.1186/1472-6882-14-84. DOI: https://doi.org/10.1186/1472-6882-14-84
Al-hadid KJ, Al-karablieh N, Abu-irmaileh B, Sharab A, Jaafreh AM Al. Antibacterial, Antifungal, Antioxidant, and Anti-Proliferative Effects of Eucalyptus camaldulensis and Pistacia atlantica Ethanol Extracts 2022;6:207–12.
Altayb HN, Yassin NF, Hosawi S, Kazmi I. In-vitro and in-silico antibacterial activity of Azadirachta indica (Neem), methanolic extract, and identification of Beta.d-Mannofuranoside as a promising antibacterial agent. BMC Plant Biol 2022;22:1–14. https://doi.org/10.1186/s12870-022-03650-5. DOI: https://doi.org/10.1186/s12870-022-03650-5
Afrin F, Ahsan T, Mondal MN, Rasul MG, Afrin M, Silva AA, et al. Evaluation of antioxidant and antibacterial activities of some selected seaweeds from Saint Martin’s Island of Bangladesh. Food Chem Adv 2023;3:100393. https://doi.org/10.1016/j.focha.2023.100393. DOI: https://doi.org/10.1016/j.focha.2023.100393
Utami W, Saragih EB, Andini M. Potensi Aktivitas Sitotoksik Belimbing Wuluh (Averrhoa bilimbi L.) Pada Sel Kanker. Lansau J Ilmu Kefarmasian 2023;1:140–52. https://doi.org/10.33772/lansau.v1i2.18. DOI: https://doi.org/10.33772/lansau.v1i2.18
Sharma RK, Bibi S, Chopra H, Khan MS, Aggarwal N, Singh I, et al. In Silico and In Vitro Screening Constituents of Eclipta alba Leaf Extract to Reveal Antimicrobial Potential. Evid Based Complement Alternat Med 2022;2022:3290790. https://doi.org/10.1155/2022/3290790. DOI: https://doi.org/10.1155/2022/3290790
Yao Q, Gao Y, Lai C, Wu C, Zhao CL, Wu JL, et al. The phytochemistry, pharmacology and applications of Melicope pteleifolia: A review. J Ethnopharmacol 2020;251:112546. https://doi.org/10.1016/j.jep.2020.112546. DOI: https://doi.org/10.1016/j.jep.2020.112546
AL-SNAFI AE. Chemical Constituents and Pharmacological Effects of Lepidium Sativum-a Review. Int J Curr Pharm Res 2019;11:1–10. https://doi.org/10.22159/ijcpr.2019v11i6.36338. DOI: https://doi.org/10.22159/ijcpr.2019v11i6.36338
Bouali N, Hammouda M Ben, Ahmad I, Ghannay S, Thouri A, Dbeibia A, et al. Multifunctional Derivatives of Spiropyrrolidine Tethered Indeno-Quinoxaline Heterocyclic Hybrids as Potent Antimicrobial, Antioxidant and Antidiabetic Agents: Design, Synthesis, In Vitro and In Silico Approaches. Molecules 2022;27. https://doi.org/10.3390/molecules27217248. DOI: https://doi.org/10.3390/molecules27217248
Al-Ostoot FH, Zabiulla, Salah S, Khanum SA. Recent investigations into synthesis and pharmacological activities of phenoxy acetamide and its derivatives (chalcone, indole and quinoline) as possible therapeutic candidates. vol. 18. Springer Berlin Heidelberg; 2021. https://doi.org/10.1007/s13738-021-02172-5. DOI: https://doi.org/10.1007/s13738-021-02172-5
Salah AI, Ali HAM, Imad HH. Spectral analysis and anti-bacterial activity of methanolic fruit extract of Citrullus colocynthis using gas chromatography-mass spectrometry. African J Biotechnol 2015;14:3131–58. https://doi.org/10.5897/ajb2015.14957. DOI: https://doi.org/10.5897/AJB2015.14957
Ojo OA, Ojo AB, Barnabas M, Iyobhebhe M, Elebiyo TC, Evbuomwan IO, et al. Phytochemical properties and pharmacological activities of the genus Pennisetum: A review. Sci African 2022;16:e01132. https://doi.org/https://doi.org/10.1016/j.sciaf.2022.e01132. DOI: https://doi.org/10.1016/j.sciaf.2022.e01132
Jorge TF, Mata AT, António C. Mass spectrometry as a quantitative tool in plant metabolomics. Philos Trans R Soc A Math Phys Eng Sci 2016;374. https://doi.org/10.1098/rsta.2015.0370. DOI: https://doi.org/10.1098/rsta.2015.0370
Shreadah MA, El Moneam NMA, Al-Assar SA, Nabil-Adam A. Phytochemical and pharmacological screening of Sargassium vulgare from Suez Canal, Egypt. Food Sci Biotechnol 2018;27:963–79. https://doi.org/10.1007/s10068-018-0323-3. DOI: https://doi.org/10.1007/s10068-018-0323-3
Sivakumar SR. GC- MS analysis and antibacterial potential of white crystalline solid from red algae Portieria hornemannii against the plant pathogenic bacteria Xanthomnas axonopodis pv . citri ( Hasse ) Vauterin et al . and Xanthomonas campestris pv . malvacearum (Smi 2014;2:174–83).
Sabira O, Vignesh AR, Ajaykumar AP, Varma SR, Jayaraj KN, Sebastin M, et al. The Chemical Composition and Antimitotic, Antioxidant, Antibacterial and Cytotoxic Properties of the Defensive Gland Extract of the Beetle, Luprops tristis Fabricius. Molecules 2022;27. https://doi.org/10.3390/molecules27217476. DOI: https://doi.org/10.3390/molecules27217476
Qanash H, Yahya R, Bakri MM, Bazaid AS, Qanash S, Shater AF, et al. Anticancer, antioxidant, antiviral and antimicrobial activities of Kei Apple (Dovyalis caffra) fruit. Sci Rep 2022;12:1–15. https://doi.org/10.1038/s41598-022-09993-1. DOI: https://doi.org/10.1038/s41598-022-09993-1
Kaur J, Dhar SK, Chauhan A, Yadav S, Mudgal G, Lyudmila A, et al. GC-MS validated phytochemical up-leveling with in vitro-raised Sansevieria trifasciata [Prain]: The Mother in Law’s tongue gets more antibacterial. Curr Plant Biol 2023;35–36:100308. https://doi.org/10.1016/j.cpb.2023.100308. DOI: https://doi.org/10.1016/j.cpb.2023.100308
Naz S, Alam S, Ahmed W, Masaud Khan S, Qayyum A, Sabir M, et al. Therapeutic Potential of Selected Medicinal Plant Extracts against Multi-Drug Resistant Salmonella enterica serovar Typhi. Saudi J Biol Sci 2022;29:941–54. https://doi.org/10.1016/j.sjbs.2021.10.008. DOI: https://doi.org/10.1016/j.sjbs.2021.10.008
Scaglione F, Musazzi UM, Minghetti P. Considerations on D-mannose Mechanism of Action and Consequent Classification of Marketed Healthcare Products. Front Pharmacol 2021;12:1–7. https://doi.org/10.3389/fphar.2021.636377. DOI: https://doi.org/10.3389/fphar.2021.636377
Parazzini F, Ricci E, Fedele F, Chiaffarino F, Esposito G, Cipriani S. Systematic review of the effect of D-mannose with or without other drugs in the treatment of symptoms of urinary tract infections/cystitis (Review). Biomed Reports 2022;17. https://doi.org/10.3892/br.2022.1552. DOI: https://doi.org/10.3892/br.2022.1552
Shaaban MT, Ghaly MF, Fahmi SM. Antibacterial activities of hexadecanoic acid methyl ester and green-synthesized silver nanoparticles against multidrug-resistant bacteria. J Basic Microbiol 2021;61:557–68. https://doi.org/10.1002/jobm.202100061. DOI: https://doi.org/10.1002/jobm.202100061
Sukarti, Risdawati, Illing I. Analisis Kandungan Senyawa Kimia Dari Ekstrak Klroform Daun Akar Bulu (merremia vitifolia) Menggunakan GC-MS. Cokroaminoto J Chem Sci 2023;5:30–8.
Harun-Or-Rashid M, Akter S, Habiba U, Laboni FR, Uddin J, Labu ZK, et al. Antioxidant, antibacterial, cytotoxic and thrombolytic activities of flowers of Mirabilis jalapa L: Possible role of phenolics and flavonoids. J Agric Food Res 2023;14:100893. https://doi.org/10.1016/j.jafr.2023.100893. DOI: https://doi.org/10.1016/j.jafr.2023.100893
Thakur BK, Kumar A, Kumar D. Green synthesis of titanium dioxide nanoparticles using Azadirachta indica leaf extract and evaluation of their antibacterial activity. South African J Bot 2019;124:223–7. https://doi.org/10.1016/j.sajb.2019.05.024. DOI: https://doi.org/10.1016/j.sajb.2019.05.024
T JAS, J R, Rajan A, Shankar V. Features of the biochemistry of Mycobacterium smegmatis, as a possible model for Mycobacterium tuberculosis. J Infect Public Health 2020;13:1255–64. https://doi.org/10.1016/j.jiph.2020.06.023. DOI: https://doi.org/10.1016/j.jiph.2020.06.023
Bottai D, Stinear TP, Supply P, Brosch R. Mycobacterial pathogenomics and evolution. Mol Genet Mycobact 2015:27–47. https://doi.org/10.1128/9781555818845.ch2. DOI: https://doi.org/10.1128/9781555818845.ch2
Maulina N, Hayati Z, Hasballah K, Zulkarnain Z, Waraztuty I, Defadheandra A. Rifampicin Resistant Tuberculosis Among Presumptive Pulmonary Tuberculosis in Province Referral Hospital, Indonesia: Dynamic Cases of a 7-Year Report. J Res Health Sci 2024;24:e00601–e00601. https://doi.org/10.34172/jrhs.2024.136. DOI: https://doi.org/10.34172/jrhs.2024.136
Agrawal P, Miryala S, Varshney U. Use of Mycobacterium smegmatis deficient in ADP-ribosyltransferase as surrogate for Mycobacterium tuberculosis in drug testing and mutation analysis. PLoS One 2015;10:1–13. https://doi.org/10.1371/journal.pone.0122076. DOI: https://doi.org/10.1371/journal.pone.0122076
Mir MA, Memish LA, Elbehairi SE, Bashir N, Masoud FS, Shati AA, et al. Antimycobacterial and Anti-cancer Properties of Myrtus communis Leaf Extract. Pharmaceuticals 2024;17:872. https://doi.org/10.3390/ph17070872. DOI: https://doi.org/10.3390/ph17070872
Dheda K, Mirzayev F, Cirillo DM, Udwadia Z, Dooley KE, Chang KC, et al. Multidrug-resistant tuberculosis. Nat Rev Dis Prim 2024;10. https://doi.org/10.1038/s41572-024-00504-2. DOI: https://doi.org/10.1038/s41572-024-00504-2
Bhunu B, Mautsa R, Mukanganyama S. Inhibition of biofilm formation in Mycobacterium smegmatis by Parinari curatellifolia leaf extracts. BMC Complement Altern Med 2017;17:1–10. https://doi.org/10.1186/s12906-017-1801-5. DOI: https://doi.org/10.1186/s12906-017-1801-5
Shahid S, Mahesar M, Ghouri N, Noreen S. A review of clinical profile, complications and antibiotic susceptibility pattern of extensively drug-resistant (XDR) Salmonella Typhi isolates in children in Karachi. BMC Infect Dis 2021;21:1–9. https://doi.org/10.1186/s12879-021-06599-2. DOI: https://doi.org/10.1186/s12879-021-06599-2
Rutter JW, Dekker L, Clare C, Slendebroek ZF, Owen KA, Mcdonald JAK, et al. A bacteriocin expression platform for targeting pathogenic bacterial species. Nat Commun 2024:1–12. https://doi.org/10.1038/s41467-024-50591-8. DOI: https://doi.org/10.1038/s41467-024-50591-8
Elsafi SH, Al Zahrani EM, Al Zaid RF, Alshagifi SA, Farghal TA, Alshamuse KB, et al. Antibiotic-resistant bacteria contaminating leafy vegetables in Saudi Arabia's eastern region. BMC Microbiol 2024;24:303. https://doi.org/10.1186/s12866-024-03456-5. DOI: https://doi.org/10.1186/s12866-024-03456-5
Bedasa S, Shiferaw D, Abraha A, Moges T. Occurrence and antimicrobial susceptibility profile of escherichia coli O157:H7 from food of animal origin in bishoftu town, central Ethiopia. Int J Food Contam 2018;5:2–9. https://doi.org/10.1186/s40550-018-0064-3. DOI: https://doi.org/10.1186/s40550-018-0064-3
Cui Q, Li W, Yang T, Qin X, Jiang X, Zhao X, et al. Prevalence and dissemination of mcr-9.1-producing non-typhoidal Salmonella strains from diarrhea patients throughout China during 2010–2020. One Heal Adv 2024;2. https://doi.org/10.1186/s44280-023-00037-5. DOI: https://doi.org/10.1186/s44280-023-00037-5
Caveney NA, Serapio-Palacios A, Woodward SE, Bozorgmehr T, Caballero G, Vuckovic M, et al. Structural and Cellular Insights into the L,D-Transpeptidase YcbB as a Therapeutic Target in Citrobacter rodentium, Salmonella Typhimurium, and Salmonella Typhi Infections. Antimicrob Agents Chemother n.d.;65:1–15.
Li W, Han H, Liu J, Ke B, Zhan L, Yang X, et al. Antimicrobial resistance profiles of Salmonella isolates from human diarrhea cases in China: an eight-year surveilance study. One Heal Adv 2023;1:1–8. https://doi.org/10.1186/s44280-023-00001-3. DOI: https://doi.org/10.1186/s44280-023-00001-3
Mendoza-Mejía BD, Medina-Aparicio L, Serrano-Fujarte I, Vázquez A, Calva E, Hernández-Lucas I. Salmonella enterica serovar Typhi genomic regions involved in low pH resistance and in invasion and replication in human macrophages. Ann Microbiol 2021;71. https://doi.org/10.1186/s13213-021-01629-5. DOI: https://doi.org/10.1186/s13213-021-01629-5
Gomaa HH, Amin DY, Ahmed AR, Ismail NA, El Dougdoug KA, Abd-Elhalim BT. Antimicrobial, antibiofilm, and antiviral investigations using egyptian phoenix dactylifera L. pits extract. AMB Express 2024;14. https://doi.org/10.1186/s13568-024-01695-3. DOI: https://doi.org/10.1186/s13568-024-01695-3
Bhandari S, Khadayat K, Poudel S, Shrestha S, Shrestha R, Devkota P, et al. Phytochemical analysis of medicinal plants of Nepal and their antibacterial and antibiofilm activities against uropathogenic Escherichia coli. BMC Complement Med Ther 2021;21:1–11. https://doi.org/10.1186/s12906-021-03293-3. DOI: https://doi.org/10.1186/s12906-021-03293-3