Plant-Based Matrix-Derived Lactic Acid Bacteria Strain SBM10 from Fermented Red Rice Syrup: In Vitro Safety Assessment and Characterization
Main Article Content
Page: 2409-2419
Abstract
Plant-based fermentation offers a route to develop nondairy probiotic candidates, yet syrup-like matrices remain underexplored compared with solid or beverage systems. This study investigated fermented red rice syrup (prepared from red rice and barley malt powder) as a source of lactic acid bacteria (LAB) and advanced one isolate, SBM10. Cultivation on MRS supplemented with CaCO₃ yielded acidogenic colonies. A stable morphotype (SBM10) was purified and exhibited a LAB consistent profile, Gram-positive rods, catalase negative, TSIA K/A without H₂S, Simmons citrate negative, gelatinase negative, CO₂ positive in Durham and γ-hemolytic on 5% sheep blood agar. Under gastrointestinal stress models (4 h, 37 °C), tolerance relative to controls was 27.14% at pH 3.0 and 35.58% in 0.3% oxgall. In disk diffusion assays, the cell-free supernatant (CFS) showed no inhibition of Escherichia coli or Staphylococcus aureus. Thus, no antibacterial activity was detected by disk diffusion under the conditions tested, whereas amoxicillin produced zones of 13.95 mm and 12.43 mm, respectively. SBM10 presents a safety-supportive, LAB-typical profile with partial tolerance to gastric-like acidity and bile. Although no disk diffusion antagonism was detected for the CFS, the results motivate taxonomic confirmation and process/formulation optimization, such as improving acid/bile robustness and re-evaluating antimicrobial potential with complementary assays, to clarify the suitability of SBM10 for plant-based functional applications.
Downloads
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
References
D’Almeida AP, Neta AAI, de Andrade-Lima M, de Albuquerque TL. Plant-based probiotic foods: current State and future trends. Food Sci Biotechnol 2024;33:3401–22. https://doi.org/10.1007/s10068-024-01674-1. DOI: https://doi.org/10.1007/s10068-024-01674-1
Murray CJL, Ikuta KS, Sharara F, Swetschinski L, Aguilar GR, Gray A, et al. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. The Lancet 2022;399:629 55. https://doi.org/10.1016/S0140-6736(21)02724-0. DOI: https://doi.org/10.1016/S0140-6736(21)02724-0
Fu J, Zheng Y, Gao Y, Xu W. Dietary fiber intake and gut microbiota in human health. Microorganisms 2022;10:2507. https://doi.org/10.3390/microorganisms10122507. DOI: https://doi.org/10.3390/microorganisms10122507
Küçükgöz K, Trząskowska M. Nondairy probiotic products: Functional foods that require more attention. Nutrients 2022;14:753. https://doi.org/10.3390/nu14040753. DOI: https://doi.org/10.3390/nu14040753
da Cruz Nascimento SS, Passos TS, de Sousa Júnior FC. Probiotics in plant-based food matrices: A review of their health benefits. PharmaNutrition 2024;28:100390. https://doi.org/10.1016/j.phanu.2024.100390. DOI: https://doi.org/10.1016/j.phanu.2024.100390
Baptista E, Liberal Â, Cardoso RVC, Fernandes Â, Dias MI, Pires TCSP, et al. Chemical and bioactive properties of red rice with potential pharmaceutical use. Molecules 2024;29:2265. https://doi.org/10.3390/molecules29102265. DOI: https://doi.org/10.3390/molecules29102265
Avinash G, Sharma N, Prasad KR, Kaur R, Singh G, Pagidipala N, et al. Unveiling the distribution of free and bound phenolic acids, flavonoids, anthocyanins, and proanthocyanidins in pigmented and non-pigmented rice genotypes. Front Plant Sci 2024;15:1324825. https://doi.org/10.3389/fpls.2024.1324825. DOI: https://doi.org/10.3389/fpls.2024.1324825
Cian RE, Garzón AG, Albarracín M, Drago SR. Barley and malt as base ingredients for the production of new bio-functional foods, 2023. https://doi.org/10.21926/rpn.2303018. DOI: https://doi.org/10.21926/rpn.2303018
Vingrys K, Mathai M, Ashton JF, Stojanovska L, Vasiljevic T, McAinch AJ, et al. The effect of malting on phenolic compounds and radical scavenging activity in grains and breakfast cereals. J Food Sci 2022;87:4188–202. https://doi.org/10.1111/1750-3841.16271. DOI: https://doi.org/10.1111/1750-3841.16271
Suandy S, Aurellia F, Nasution MAS. DAMPAK PEMBERIAN SIRUP BERAS MERAH FERMENTASI BUBUK BARLEY TERHADAP BERAT BADAN TIKUS WISTAR DIABETES YANG DIINDUKSI ALOKSAN. Jambura Journal of Health Sciences and Research 2024;6:544–51. https://doi.org/10.35971/jjhsr.v6i4.27569. DOI: https://doi.org/10.35971/jjhsr.v6i4.27569
Suandy S, Sitepu NN, Nasution AS. Comparison of the effectiveness of red rice syrup (Oryza nivara) and acacia honey (Acacia carpa) on lipid profiles in white rats (Rattus norvegicus) and histopathological features of the liver induced by alloxan. Malahayati International Journal of Nursing and Health Science 2024;7:1077–85. https://doi.org/10.33024/minh.v7i9.673. DOI: https://doi.org/10.33024/minh.v7i9.673
Suandy S, Nababan WP, Nasution AS. The Effectiveness of Brown Rice Syrup (Oriza nivara) and Acacia Honey (Acacia carpa) on. Proceedings of the 1st International Conference on Lifestyle Diseases and Natural Medicine (ICOLIFEMED 2024), vol. 84, Springer Nature; 2025, p. 306. https://doi.org/10.2991/978-94-6463-664-2_28. DOI: https://doi.org/10.2991/978-94-6463-664-2_28
Sarıtaş S, Portocarrero ACM, Miranda López JM, Lombardo M, Koch W, Raposo A, et al. The impact of fermentation on the antioxidant activity of food products. Molecules 2024;29:3941. https://doi.org/10.3390/molecules29163941. DOI: https://doi.org/10.3390/molecules29163941
Lin S, Zhang X, Wang J, Li T, Wang L. Effect of lactic acid bacteria fermentation on bioactive components of black rice bran (Oryza sativa L.) with different milling fractions. Food Biosci 2024;58:103684. https://doi.org/10.1016/j.fbio.2024.103684. DOI: https://doi.org/10.1016/j.fbio.2024.103684
Cichońska P, Ziębicka A, Ziarno M. Properties of rice-based beverages fermented with lactic acid bacteria and propionibacterium. Molecules 2022;27:2558. https://doi.org/10.3390/molecules27082558. DOI: https://doi.org/10.3390/molecules27082558
Kim N-H, Choi HS, Lee MY, Seong H, Han NS, Hu H-J, et al. The effects of fermented Rice drink with Lactiplantibacillus plantarum Jsa22 in overweight irritable bowel syndrome patients: a randomized, double-blind, placebo-controlled study. J Neurogastroenterol Motil 2024;30:194. https://doi.org/10.5056/jnm23184. DOI: https://doi.org/10.5056/jnm23184
Tang H, Huang W, Yao Y-F. The metabolites of lactic acid bacteria: classification, biosynthesis and modulation of gut microbiota. Microbial Cell 2023;10:49. https://doi.org/10.15698/mic2023.03.792. DOI: https://doi.org/10.15698/mic2023.03.792
Ismael M, Huang M, Zhong Q. The Bacteriocins produced by lactic acid bacteria and the promising applications in promoting gastrointestinal health. Foods 2024;13:3887. https://doi.org/10.3390/foods13233887. DOI: https://doi.org/10.3390/foods13233887
Jiang Y-H, Yang R-S, Lin Y-C, Xin W-G, Zhou H-Y, Wang F, et al. Assessment of the safety and probiotic characteristics of Lactobacillus salivarius CGMCC20700 based on whole-genome sequencing and phenotypic analysis. Front Microbiol 2023;14:1120263. https://doi.org/10.3389/fmicb.2023.1120263. DOI: https://doi.org/10.3389/fmicb.2023.1120263
Gupta M, Raut R, Manandhar S, Chaudhary A, Shrestha U, Dangol S, et al. Identification and characterization of probiotics isolated from indigenous chicken (Gallus domesticus) of Nepal. PLoS One 2023;18:e0280412. https://doi.org/10.1371/journal.pone.0280412. DOI: https://doi.org/10.1371/journal.pone.0280412
Khan R, Wali S, Khan S, Munir S, Pari B, Yousuf AM, et al. Isolation and characterization of pathogenic Klebsiella pneumoniae strains from lettuce: A potential source of antibiotic resistance and development of a mathematical model for ANOVA results. Front Microbiol 2024;15:1473055. https://doi.org/10.3389/fmicb.2024.1473055. DOI: https://doi.org/10.3389/fmicb.2024.1473055
Rahman MS, Emon D Das, Nupur AH, Mazumder MAR, Iqbal A, Alim MA. Isolation and characterization of probiotic lactic acid bacteria from local yogurt and development of inulin-based synbiotic yogurt with the isolated bacteria. Applied Food Research 2024;4:100457. https://doi.org/10.1016/j.afres.2024.100457. DOI: https://doi.org/10.1016/j.afres.2024.100457
Saleem G, Rao B, Khaskheli GB, Qu H, Shabudden M, Qasim M, et al. Antioxidant and stress-adaptive properties of putative probiotic bacteria in Pakistani fermented buffalo milk. Front Nutr 2025;12:1619212. https://doi.org/10.3389/fnut.2025.1619212. DOI: https://doi.org/10.3389/fnut.2025.1619212
Arbab S, Ullah H, Wang W, Qadeer A, Aseeri AA, Alzahrani FM, et al. Prevalence and Antimicrobial Drug Resistance of Gram-Negative Bacteria in Dairy Feed and Water: A One Health Concern. Front Vet Sci 2025;12:1654200. https://doi.org/10.3389/fvets.2025.1654200. DOI: https://doi.org/10.3389/fvets.2025.1654200
Bentahar MC, Benabdelmoumene D, Robert V, Dahmouni S, Qadi WSM, Bengharbi Z, et al. Evaluation of probiotic potential and functional properties of Lactobacillus strains isolated from Dhan, traditional Algerian goat milk butter. Foods 2024;13:3781. https://doi.org/10.3390/foods13233781. DOI: https://doi.org/10.3390/foods13233781
Psomas E, Sakaridis I, Boukouvala E, Karatzia M-A, Ekateriniadou L V, Samouris G. Indigenous lactic acid bacteria isolated from raw Graviera cheese and evaluation of their most important technological properties. Foods 2023;12:370. https://doi.org/10.3390/foods12020370. DOI: https://doi.org/10.3390/foods12020370
Yumnam H, Nath S, Chakraborty P, Sharma I. Assessment of potential probiotic lactic acid bacteria in rice-based fermented products of Southern Assam, Northeast India. Front Microbiol 2025;16:1536593. https://doi.org/10.3389/fmicb.2025.1536593. DOI: https://doi.org/10.3389/fmicb.2025.1536593
Kong X, Zhang J, Shen H, Shi N, Zhou H, Li Y, et al. Screening, identification, and fermentation characteristics of lactic acid bacteria from pickled potherb mustard and potential applications. Foods 2025;14:1431. https://doi.org/10.3390/foods14081431. DOI: https://doi.org/10.3390/foods14081431
Bhat VJ, Vegesna S V, Kiani M, Zhao X, Blaschke D, Du N, et al. Detecting Bacterial Cell Viability in Few µL Solutions from Impedance Measurements on Silicon-Based Biochips. Int J Mol Sci 2021;22:3541. DOI: https://doi.org/10.3390/ijms22073541
Abdel Tawab FI, Abd Elkadr MH, Sultan AM, Hamed EO, El-Zayat AS, Ahmed MN. Probiotic potentials of lactic acid bacteria isolated from Egyptian fermented food. Sci Rep 2023;13:16601. https://doi.org/10.1038/s41598-023-43752-0. DOI: https://doi.org/10.1038/s41598-023-43752-0
Yang KM, Kim J-S, Kim H-S, Kim Y-Y, Oh J-K, Jung H-W, et al. Lactobacillus reuteri AN417 cell-free culture supernatant as a novel antibacterial agent targeting oral pathogenic bacteria. Sci Rep 2021;11:1631. https://doi.org/10.1038/s41598-020-80921-x. DOI: https://doi.org/10.1038/s41598-020-80921-x
Murwani R, Anggraeni R, Setiawan GNA, Astari PD, Cahyani NKD, Sibero MT, et al. Lactic acid bacteria isolates and the microbiome of Cincalok, Tempoyak, and Mandai: A traditional fermented food from Kalimantan Island, Indonesia. Int J Food Sci 2024;2024:6589766. https://doi.org/10.1155/2024/6589766. DOI: https://doi.org/10.1155/2024/6589766
Olorunshola MM, Agidigbi TS, Adeniyi BA. Antimicrobial activity of lactic acid bacteria isolated from the gut of African catfish (Clarias gariepinus) against multi-drug-resistant resident pathogens. BMC Microbiol 2025;25:410. https://doi.org/10.1186/s12866-025-04139-5. DOI: https://doi.org/10.1186/s12866-025-04139-5
Kiani A, Nami Y, Barghi A, Salehian M, Goudarzi F, Haghshenas B. Synergistic antimicrobial and probiotic activity of lactic acid bacteria isolated from Tarkhineh against Candida albicans. Sci Rep 2025;15:20651. https://doi.org/10.1038/s41598-025-07549-7. DOI: https://doi.org/10.1038/s41598-025-07549-7
Goa T, Beyene G, Mekonnen M, Gorems K. Isolation and characterization of lactic acid bacteria from fermented milk produced in Jimma Town, Southwest Ethiopia, and evaluation of their antimicrobial activity against selected pathogenic bacteria. Int J Food Sci 2022;2022:2076021. https://doi.org/10.1155/2022/2076021. DOI: https://doi.org/10.1155/2022/2076021
Albene D, Lema NK, Tesfaye G, Andeta AF, Ali K, Guadie A. Probiotic potential of lactic acid bacteria isolated from Ethiopian traditional fermented Cheka beverage. Ann Microbiol 2024;74:25. https://doi.org/10.1186/s13213-024-01771-w. DOI: https://doi.org/10.1186/s13213-024-01771-w
Sadanandan B, Yogendraiah KM. Enterococcus faecalis Biofilm: A Clinical and Environmental Hazard. Medical Sciences Forum, vol. 35, MDPI; 2025, p. 5. https://doi.org/10.3390/msf2025035005. DOI: https://doi.org/10.3390/msf2025035005
Eicher C, Coulon J, Favier M, Alexandre H, Reguant C, Grandvalet C. Citrate metabolism in lactic acid bacteria: is there a beneficial effect for Oenococcus oeni in wine? Front Microbiol 2024;14:1283220. https://doi.org/10.3389/fmicb.2023.1283220. DOI: https://doi.org/10.3389/fmicb.2023.1283220
Khushboo, Karnwal A, Malik T. Characterization and selection of probiotic lactic acid bacteria from different dietary sources for development of functional foods. Front Microbiol 2023;14:1170725. https://doi.org/10.3389/fmicb.2023.1170725. DOI: https://doi.org/10.3389/fmicb.2023.1170725
Wang W, Dong H, Chen Q, Chang X, Wang L, Miao C, et al. Antibacterial Efficacy of Feline-Derived Lactic Acid Bacteria against Enteropathogenic Escherichia coli: A Comprehensive In Vitro Analysis. Fermentation 2024;10:514. https://doi.org/10.3390/fermentation10100514. DOI: https://doi.org/10.3390/fermentation10100514
Bamgbose T, Alberdi P, Abdullahi IO, Inabo HI, Bello M, Sinha S, et al. Functional characterization of α-Gal-producing lactic acid bacteria with potential probiotic properties. Sci Rep 2022;12:7484. https://doi.org/10.1038/s41598-022-11632-8. DOI: https://doi.org/10.1038/s41598-022-11632-8
Saini P, Ayyanna R, Kumar R, Bhowmick SK, Bhaskar V, Dey B. Restriction of growth and biofilm formation of ESKAPE pathogens by caprine gut-derived probiotic bacteria. Front Microbiol 2024;15:1428808. https://doi.org/10.3389/fmicb.2024.1428808. DOI: https://doi.org/10.3389/fmicb.2024.1428808
Lee M, Bang W-Y, Lee H-B, Yang S-Y, Lee K-S, Kang H-J, et al. Safety Assessment and Evaluation of Probiotic Potential of Lactobacillus bulgaricus IDCC 3601 for Human Use. Microorganisms 2024;12:2063. https://doi.org/10.3390/microorganisms12102063. DOI: https://doi.org/10.3390/microorganisms12102063
Zhao J, Zhao J, Zang J, Peng C, Li Z, Zhang P. Isolation, identification, and evaluation of lactic acid bacteria with probiotic potential from traditional fermented sour meat. Front Microbiol 2024;15:1421285. https://doi.org/10.3389/fmicb.2024.1421285. DOI: https://doi.org/10.3389/fmicb.2024.1421285
Zommara M, El-Ghaish S, Haertle T, Chobert J-M, Ghanimah M. Probiotic and technological characterization of selected Lactobacillus strains isolated from different Egyptian cheeses. BMC Microbiol 2023;23:160. https://doi.org/10.1186/s12866-023-02890-1. DOI: https://doi.org/10.1186/s12866-023-02890-1
Benyamin MS, Perisin MP, Hellman CA, Schwalm ND, Jahnke JP, Sund CJ. Modeling control and transduction of electrochemical gradients in acid-stressed bacteria. IScience 2023;26. https://doi.org/10.1016/j.isci.2023.107140. DOI: https://doi.org/10.1016/j.isci.2023.107140
Gouthami B, Ramalakshmi A, Balakrishnan M, Karthikeyan S, Muniraj I, Packialakshmi JS. Functional and molecular characterization of millet-associated probiotic bacteria. BMC Microbiol 2024;24:485. https://doi.org/10.1186/s12866-024-03606-9. DOI: https://doi.org/10.1186/s12866-024-03606-9
Tumbarski Y, Peykova-Shapkova I, Ivanova M, Cholakov R, Dutkiewicz A, Grzymajło K. Characterization and Selection of Lactobacillus Strains with Potential Probiotic Applications. Applied Sciences 2025;15:2902. https://doi.org/10.3390/app15062902. DOI: https://doi.org/10.3390/app15062902
Agolino G, Pino A, Vaccalluzzo A, Cristofolini M, Solieri L, Caggia C, et al. Bile salt hydrolase: The complexity behind its mechanism in relation to lowering-cholesterol lactobacilli probiotics. J Funct Foods 2024;120:106357. https://doi.org/10.1016/j.jff.2024.106357. DOI: https://doi.org/10.1016/j.jff.2024.106357
Shahverdi S, Barzegari AA, Bakhshayesh RV, Nami Y. In-vitro and in-vivo antibacterial activity of potential probiotic Lactobacillus paracasei against Staphylococcus aureus and Escherichia coli. Heliyon 2023;9. https://doi.org/10.1016/j.heliyon.2023.e14641. DOI: https://doi.org/10.1016/j.heliyon.2023.e14641
Hossain TJ. Methods for screening and evaluation of antimicrobial activity: A review of protocols, advantages, and limitations. Eur J Microbiol Immunol (Bp) 2024;14:97–115. https://doi.org/10.1556/1886.2024.00035. DOI: https://doi.org/10.1556/1886.2024.00035
Scillato M, Spitale A, Mongelli G, Privitera GF, Mangano K, Cianci A, et al. Antimicrobial properties of Lactobacillus cell‐free supernatants against multidrug‐resistant urogenital pathogens. Microbiologyopen 2021;10:e1173. https://doi.org/10.1002/mbo3.1173. DOI: https://doi.org/10.1002/mbo3.1173
Chen X, Bai H, Mo W, Zheng X, Chen H, Yin Y, et al. Lactic Acid Bacteria Bacteriocins: Safe and Effective Antimicrobial Agents. Int J Mol Sci 2025;26:4124. https://doi.org/10.3390/ijms26094124. DOI: https://doi.org/10.3390/ijms26094124
Ibrahim SA, Ayivi RD, Zimmerman T, Siddiqui SA, Altemimi AB, Fidan H, et al. Lactic acid bacteria as antimicrobial agents: Food safety and microbial food spoilage prevention. Foods 2021;10:3131. DOI: https://doi.org/10.3390/foods10123131