Bacterial Bioactive Metabolites: A Review on Antimicrobial Potential and Applications
Main Article Content
Page: 399-410
Abstract
Bacteria are a promising source of bioactive compounds. This review provides a concise overview of existing research on antimicrobial molecules from bacteria. Additionally, it briefly summarizes bacteriocins, non-ribosomal peptides, polyketides, and lipopeptides targeting pathogens resistant to several drugs, considering next-generation antibiotics. The review highlights the potential use of bacteria as a source of antimicrobials for biotechnological, nutraceutical, and pharmaceutical applications. However, further investigation is needed to isolate, separate, purify, and characterize these bioactive compounds, as well as to formulate them into clinically approved antibiotics.
Downloads
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
References
Feehan B, Ran Q, Monk K, Nagaraja TG, Tokach MD, Amachawadi RG, et al. High proportions of single-nucleotide variations associated with multidrug resistance in swine gut microbial populations. BioRxiv 2022:2022.12.03.518979. DOI: https://doi.org/10.1101/2022.12.03.518979
Rani A, Saini KC, Bast F, Varjani S, Mehariya S, Bhatia SK, et al. A review on microbial products and their perspective application as antimicrobial agents. Biomolecules 2021;11. https://doi.org/10.3390/biom11121860. DOI: https://doi.org/10.3390/biom11121860
Cuong N V., Padungtod P, Thwaites G, Carrique-Mas JJ. Antimicrobial usage in animal production: A review of the literature with a focus on low-and middle-income countries. Antibiotics 2018;7. https://doi.org/10.3390/antibiotics7030075. DOI: https://doi.org/10.3390/antibiotics7030075
De Giani A, Zampolli J, Di Gennaro P. Recent Trends on Biosurfactants With Antimicrobial Activity Produced by Bacteria Associated With Human Health: Different Perspectives on Their Properties, Challenges, and Potential Applications. Front Microbiol 2021;12:1–14. https://doi.org/10.3389/fmicb.2021.655150. DOI: https://doi.org/10.3389/fmicb.2021.655150
Berdigaliyev N, Aljofan M. An overview of drug discovery and development. Future Med Chem 2020;12:939–47. https://doi.org/10.4155/fmc-2019-0307. DOI: https://doi.org/10.4155/fmc-2019-0307
Cryan JF, Dinan TG. Mind-altering microorganisms: The impact of the gut microbiota on brain and behaviour. Nat Rev Neurosci 2012;13:701–12. https://doi.org/10.1038/nrn3346. DOI: https://doi.org/10.1038/nrn3346
Barcenilla C, Ducic M, López M, Prieto M, Álvarez-Ordóñez A. Application of lactic acid bacteria for the biopreservation of meat products: A systematic review. Meat Sci 2022;183. https://doi.org/10.1016/j.meatsci.2021.108661. DOI: https://doi.org/10.1016/j.meatsci.2021.108661
Barbosa F, Pinto E, Kijjoa A, Pinto M, Sousa E. Targeting antimicrobial drug resistance with marine natural products. Int J Antimicrob Agents 2020;56. https://doi.org/10.1016/j.ijantimicag.2020.106005. DOI: https://doi.org/10.1016/j.ijantimicag.2020.106005
Ayuningrum D, Liu Y, Riyanti, Sibero MT, Kristiana R, Asagabaldan MA, et al. Tunicate-associated bacteria show a great potential for the discovery of antimicrobial compounds. PLoS One 2019;14:1–14. https://doi.org/10.1371/journal.pone.0213797. DOI: https://doi.org/10.1371/journal.pone.0213797
Tareq FS, Lee HS, Lee YJ, Lee JS, Shin HJ. Ieodoglucomide C and ieodoglycolipid, new glycolipids from a marine-derived bacterium bacillus licheniformis 09IDYM23. Lipids 2015;50:513–9. https://doi.org/10.1007/s11745-015-4014-z. DOI: https://doi.org/10.1007/s11745-015-4014-z
Anjum K, Sadiq I, Chen L, Kaleem S, Li XC, Zhang Z, et al. Novel antifungal janthinopolyenemycins A and B from a co-culture of marine-associated Janthinobacterium spp. ZZ145 and ZZ148. Tetrahedron Lett 2018;59:3490–4. https://doi.org/10.1016/j.tetlet.2018.08.022. DOI: https://doi.org/10.1016/j.tetlet.2018.08.022
Zhang B, Wang KB, Wang W, Bi SF, Mei YN, Deng XZ, et al. Discovery, Biosynthesis, and Heterologous Production of Streptoseomycin, an Anti-Microaerophilic Bacteria Macrodilactone. Org Lett 2018;20:2967–71. https://doi.org/10.1021/acs.orglett.8b01006. DOI: https://doi.org/10.1021/acs.orglett.8b01006
Wiese J, Abdelmohsen UR, Motiei A, Humeida UH, Imhoff JF. Bacicyclin, a new antibacterial cyclic hexapeptide from Bacillus sp. strain BC028 isolated from Mytilus edulis. Bioorganic Med Chem Lett 2018;28:558–61. https://doi.org/10.1016/j.bmcl.2018.01.062. DOI: https://doi.org/10.1016/j.bmcl.2018.01.062
Zhao X, Kuipers OP. Identification and classification of known and putative antimicrobial compounds produced by a wide variety of Bacillales species. BMC Genomics 2016;17:1–18. https://doi.org/10.1186/s12864-016-3224-y. DOI: https://doi.org/10.1186/s12864-016-3224-y
Caulier S, Nannan C, Gillis A, Licciardi F, Bragard C, Mahillon J. Overview of the antimicrobial compounds produced by members of the Bacillus subtilis group. Front Microbiol 2019;10:1–19. https://doi.org/10.3389/fmicb.2019.00302. DOI: https://doi.org/10.3389/fmicb.2019.00302
Le MNT, Kawada-Matsuo M, Komatsuzawa H. Efficiency of Antimicrobial Peptides Against Multidrug-Resistant Staphylococcal Pathogens. Front Microbiol 2022;13. https://doi.org/10.3389/fmicb.2022.930629. DOI: https://doi.org/10.3389/fmicb.2022.930629
Hoyt PR, Sizemore RK. Competitive dominance by a bacteriocin-producing Vibrio harveyi strain. Appl Environ Microbiol 1982;44:653–8. https://doi.org/10.1128/aem.44.3.653-658.1982. DOI: https://doi.org/10.1128/aem.44.3.653-658.1982
Hatosy SM, Martiny AC. The ocean as a global reservoir of antibiotic resistance genes. Appl Environ Microbiol 2015;81:7593–9. https://doi.org/10.1128/AEM.00736-15. DOI: https://doi.org/10.1128/AEM.00736-15
Evivie SE, Huo GC, Igene JO, Bian X. Some current applications, limitations and future perspectives of lactic acid bacteria as probiotics. Food Nutr Res 2017;61. https://doi.org/10.1080/16546628.2017.1318034. DOI: https://doi.org/10.1080/16546628.2017.1318034
Lozo J, Vukasinovic M, Strahinic I, Topisirovic L. Characterization and antimicrobial activity of bacteriocin 217 produced by natural isolate Lactobacillus paracasei subsp. paracasei BGBUK2-16. J Food Prot 2004;67:2727–34. https://doi.org/10.4315/0362-028X-67.12.2727. DOI: https://doi.org/10.4315/0362-028X-67.12.2727
Drissi F, Buffet S, Raoult D, Merhej V. Common occurrence of antibacterial agents in human intestinal microbiota. Front Microbiol 2015;6:1–8. https://doi.org/10.3389/fmicb.2015.00441. DOI: https://doi.org/10.3389/fmicb.2015.00441
Leite JA, Tulini FL, Reis-Teixeira FB dos, Rabinovitch L, Chaves JQ, Rosa NG, et al. Bacteriocin-like inhibitory substances (BLIS) produced by Bacillus cereus: Preliminary characterization and application of partially purified extract containing BLIS for inhibiting Listeria monocytogenes in pineapple pulp. Lwt 2016;72:261–6. https://doi.org/10.1016/j.lwt.2016.04.058. DOI: https://doi.org/10.1016/j.lwt.2016.04.058
Jawan R, Abbasiliasi S, Mustafa S, Kapri MR, Halim M, Ariff AB. In Vitro Evaluation of Potential Probiotic Strain Lactococcus lactis Gh1 and Its Bacteriocin-Like Inhibitory Substances for Potential Use in the Food Industry. Probiotics Antimicrob Proteins 2021;13:422–40. https://doi.org/10.1007/s12602-020-09690-3. DOI: https://doi.org/10.1007/s12602-020-09690-3
Garsa AK, Choudhury PK, Puniya AK, Dhewa T, Malik RK, Tomar SK. Bovicins: The Bacteriocins of Streptococci and Their Potential in Methane Mitigation. Probiotics Antimicrob Proteins 2019;11:1403–13. https://doi.org/10.1007/s12602-018-9502-z. DOI: https://doi.org/10.1007/s12602-018-9502-z
Meade E, Slattery MA, Garvey M. Bacteriocins, potent antimicrobial peptides and the fight against multi drug resistant species: Resistance is futile? Antibiotics 2020;9. https://doi.org/10.3390/antibiotics9010032. DOI: https://doi.org/10.3390/antibiotics9010032
Gradisteanu Pircalabioru G, Popa LI, Marutescu L, Gheorghe I, Popa M, Czobor Barbu I, et al. Bacteriocins in the era of antibiotic resistance: rising to the challenge. Pharmaceutics 2021;13:1–15. https://doi.org/10.3390/pharmaceutics13020196. DOI: https://doi.org/10.3390/pharmaceutics13020196
Ibrahim OO. Classification of Antimicrobial Peptides Bacteriocins, and the Nature of Some Bacteriocins with Potential Applications in Food Safety and Bio-Pharmaceuticals. EC Microbiol 2019;7:591–608.
O’Connor E, Shand R. Halocins and sulfolobicins: The emerging story of archaeal protein and peptide antibiotics. J Ind Microbiol Biotechnol 2002;28:23–31. https://doi.org/10.1038/sj/jim/7000190. DOI: https://doi.org/10.1038/sj.jim.7000190
Newstead LL, Varjonen K, Nuttall T, Paterson GK. Staphylococcal-produced bacteriocins and antimicrobial peptides: Their potential as alternative treatments for staphylococcus aureus infections. Antibiotics 2020;9:1–19. https://doi.org/10.3390/antibiotics9020040. DOI: https://doi.org/10.3390/antibiotics9020040
Negash AW, Tsehai BA. Current Applications of Bacteriocin. Int J Microbiol 2020;2020. https://doi.org/10.1155/2020/4374891. DOI: https://doi.org/10.1155/2020/4374891
Shin JM, Gwak JW, Kamarajan P, Fenno JC, Rickard AH, Kapila YL. Biomedical applications of nisin. J Appl Microbiol 2016;120:1449–65. https://doi.org/10.1111/jam.13033. DOI: https://doi.org/10.1111/jam.13033
Yu X, Lu N, Wang J, Chen Z, Chen C, Regenstein J Mac, et al. Effect of N-terminal modification on the antimicrobial activity of nisin. Food Control 2020;114. https://doi.org/10.1016/j.foodcont.2020.107227. DOI: https://doi.org/10.1016/j.foodcont.2020.107227
Reczyńska‐kolman K, Hartman K, Kwiecień K, Brzychczy‐włoch M, Pamuła E. Composites based on gellan gum, alginate and nisin‐enriched lipid nanoparticles for the treatment of infected wounds. Int J Mol Sci 2022;23. https://doi.org/10.3390/ijms23010321. DOI: https://doi.org/10.3390/ijms23010321
Alves FCB, Albano M, Andrade BFMT, Chechi JL, Pereira AFM, Furlanetto A, et al. Comparative Proteomics of Methicillin-Resistant Staphylococcus aureus Subjected to Synergistic Effects of the Lantibiotic Nisin and Oxacillin. Microb Drug Resist 2020;26:179–89. https://doi.org/10.1089/mdr.2019.0038. DOI: https://doi.org/10.1089/mdr.2019.0038
El-Kazzaz SS, Abou El-Khier NT. Effect of the lantibiotic nisin on inhibitory and bactericidal activities of antibiotics used against vancomycin-resistant enterococci. J Glob Antimicrob Resist 2020;22:263–9. https://doi.org/10.1016/j.jgar.2020.02.031. DOI: https://doi.org/10.1016/j.jgar.2020.02.031
Webber JL, Namivandi-Zangeneh R, Drozdek S, Wilk KA, Boyer C, Wong EHH, et al. Incorporation and antimicrobial activity of nisin Z within carrageenan/chitosan multilayers. Sci Rep 2021;11:1–15. https://doi.org/10.1038/s41598-020-79702-3. DOI: https://doi.org/10.1038/s41598-020-79702-3
Kjos M, Salehian Z, Nes IF, Diep DB. An extracellular loop of the mannose phosphotransferase system component IIC is responsible for specific targeting by class IIa bacteriocins. J Bacteriol 2010;192:5906–13. https://doi.org/10.1128/JB.00777-10. DOI: https://doi.org/10.1128/JB.00777-10
Lozo J, Topisirovic L, Kojic M. Natural bacterial isolates as an inexhaustible source of new bacteriocins. Appl Microbiol Biotechnol 2021;105:477–92. https://doi.org/10.1007/s00253-020-11063-3. DOI: https://doi.org/10.1007/s00253-020-11063-3
Müller A, Klöckner A, Schneider T. Targeting a cell wall biosynthesis hot spot. Nat Prod Rep 2017;34:909–32. https://doi.org/10.1039/c7np00012j. DOI: https://doi.org/10.1039/C7NP00012J
Alvarez-Sieiro P, Montalbán-López M, Mu D, Kuipers OP. Bacteriocins of lactic acid bacteria: extending the family. Appl Microbiol Biotechnol 2016;100:2939–51. https://doi.org/10.1007/s00253-016-7343-9. DOI: https://doi.org/10.1007/s00253-016-7343-9
Wang H, Fewer DP, Holm L, Rouhiainen L, Sivonen K. Atlas of nonribosomal peptide and polyketide biosynthetic pathways reveals common occurrence of nonmodular enzymes. Proc Natl Acad Sci U S A 2014;111:9259–64. https://doi.org/10.1073/pnas.1401734111. DOI: https://doi.org/10.1073/pnas.1401734111
Gutiérrez-Chávez C, Benaud N, Ferrari BC. The ecological roles of microbial lipopeptides: Where are we going? Comput Struct Biotechnol J 2021;19:1400–13. https://doi.org/10.1016/j.csbj.2021.02.017. DOI: https://doi.org/10.1016/j.csbj.2021.02.017
Perez KJ, Viana J dos S, Lopes FC, Pereira JQ, dos Santos DM, Oliveira JS, et al. Bacillus spp. isolated from puba as a source of biosurfactants and antimicrobial lipopeptides. Front Microbiol 2017;8:1–14. https://doi.org/10.3389/fmicb.2017.00061. DOI: https://doi.org/10.3389/fmicb.2017.00061
Kourmentza K, Gromada X, Michael N, Degraeve C, Vanier G, Ravallec R, et al. Antimicrobial Activity of Lipopeptide Biosurfactants Against Foodborne Pathogen and Food Spoilage Microorganisms and Their Cytotoxicity. Front Microbiol 2021;11:1–15. https://doi.org/10.3389/fmicb.2020.561060. DOI: https://doi.org/10.3389/fmicb.2020.561060
Mohammed Abdel-Hafiz Faisal Shannaq MHMI, Mohamed N, Abdul Rahman Hassan, Najeeb Kaid Nasser Al-Shorgani, Hamid AA. Antibacterial Activity of Surfactin Produced by Bacillus subtilis MSH1 2017;4:402–7.
Takahashi T, Ohno O, Ikeda Y, Sawa R, Homma Y, Igarashi M, et al. Inhibition of lipopolysaccharide activity by a bacterial cyclic lipopeptide surfactin. J Antibiot (Tokyo) 2006;59:35–43. https://doi.org/10.1038/ja.2006.6. DOI: https://doi.org/10.1038/ja.2006.6
Calvo H, Mendiara I, Arias E, Blanco D, Venturini ME. The role of iturin A from B. amyloliquefaciens BUZ-14 in the inhibition of the most common postharvest fruit rots. vol. 82. Elsevier Ltd; 2019. https://doi.org/10.1016/j.fm.2019.01.010. DOI: https://doi.org/10.1016/j.fm.2019.01.010
Sur S, Romo TD, Grossfield A. Selectivity and Mechanism of Fengycin, an Antimicrobial Lipopeptide, from Molecular Dynamics. J Phys Chem B 2018;122:2219–26. https://doi.org/10.1021/acs.jpcb.7b11889. DOI: https://doi.org/10.1021/acs.jpcb.7b11889
Gimenez D, Phelan A, Murphy CD, Cobb SL. Fengycin A Analogues with Enhanced Chemical Stability and Antifungal Properties. Org Lett 2021;23:4672–6. https://doi.org/10.1021/acs.orglett.1c01387. DOI: https://doi.org/10.1021/acs.orglett.1c01387
Asadi A, Abdolmaleki A, Azizi-Shalbaf S, Gurushankar K. Molecular Dynamics Study of Surfactin Interaction with Lipid Bilayer Membranes. Gene, Cell Tissue 2021;8:1–9. https://doi.org/10.5812/gct.112646. DOI: https://doi.org/10.5812/gct.112646
Ali SAM, Sayyed RZ, Mir MI, Khan MY, Hameeda B, Alkhanani MF, et al. Induction of Systemic Resistance in Maize and Antibiofilm Activity of Surfactin From Bacillus velezensis MS20. Front Microbiol 2022;13:1–15. https://doi.org/10.3389/fmicb.2022.879739. DOI: https://doi.org/10.3389/fmicb.2022.879739
Inès M, Dhouha G. Lipopeptide surfactants: Production, recovery and pore forming capacity. Peptides 2015;71:100–12. https://doi.org/10.1016/j.peptides.2015.07.006. DOI: https://doi.org/10.1016/j.peptides.2015.07.006
Straus SK, Hancock REW. Mode of action of the new antibiotic for Gram-positive pathogens daptomycin: Comparison with cationic antimicrobial peptides and lipopeptides. Biochim Biophys Acta - Biomembr 2006;1758:1215–23. https://doi.org/10.1016/j.bbamem.2006.02.009. DOI: https://doi.org/10.1016/j.bbamem.2006.02.009
Ma Z, Zhang S, Sun K, Hu J. Identification and characterization of a cyclic lipopeptide iturin A from a marine-derived Bacillus velezensis 11-5 as a fungicidal agent to Magnaporthe oryzae in rice. J Plant Dis Prot 2020;127:15–24. https://doi.org/10.1007/s41348-019-00282-0. DOI: https://doi.org/10.1007/s41348-019-00282-0
Xiao J, Guo X, Qiao X, Zhang X, Chen X, Zhang D. Activity of Fengycin and Iturin A Isolated From Bacillus subtilis Z-14 on Gaeumannomyces graminis Var. tritici and Soil Microbial Diversity. Front Microbiol 2021;12:1–14. https://doi.org/10.3389/fmicb.2021.682437. DOI: https://doi.org/10.3389/fmicb.2021.682437