Main Article Content

Nining Nining
https://orcid.org/0000-0003-1453-9237
Inding Gusmayadi
https://orcid.org/0000-0003-4756-8376
Febri Romansyah

Page: 1-9

Abstract

One factor that greatly influences the active drug solubility is particle size. Ibuprofen is a non-steroidal anti-inflammatory that is poorly water-soluble, potentially slowing its drug dissolution. Milling is one way to reduce particle size and help to enhance drug dissolution. This research aims to study the milling process effect on the particle size of ibuprofen and the capsule dissolution rate. Micrometer-sized ibuprofen (P1) is processed to nanometer size using the wet-milling method for 15 hours (P2) and 20 hours (P3) using HPMC (Hydroxy Propyl Methyl Cellulose) as a stabilising polymer. All particles were evaluated for particle size, and FTIR was tested and formulated into capsules. The powder mass was evaluated for flow properties. Capsule evaluation was also carried out, which included a disintegration time test, weight uniformity test, and dissolution test. The three particles have sizes of 40.6 µm (P1), 438.9 ± 20.9 nm (P2), and 267.1 ± 4.1 nm (P3). FTIR test results show compatibility between ibuprofen and HPMC. The disintegration time test results and capsule weight uniformity met the compendial requirements. Based on the dissolution test, the three formulas showed significant differences (sig p 0.0002 < 0.05) in the per cent dissolution. Obtained Q60 F1-F3 respectively were 99.61 ± 8.75%; 110.03±5.97%; and 115.95 ± 3.34%. The conclusion obtained is that the milling process has a significant effect on the dissolution percentage of ibuprofen.

Downloads

Download data is not yet available.

Article Details

How to Cite
Nining, N., Gusmayadi, I., & Romansyah, F. (2024). Effect of ball milling on ibuprofen solid dispersion with HPMC carrier on particle size and capsule dissolution rate . Journal of Pharmaceutical and Sciences, 7(1), 1–9. https://doi.org/10.36490/journal-jps.com.v7i1.250
Section
Original Articles

References

Riekes MK, Kuminek G, Rauber GS, De Campos CEM, Bortoluzzi AJ, Stulzer HK. HPMC as a potential enhancer of nimodipine biopharmaceutical properties via ball-milled solid dispersions. Carbohydr Polym 2014;99:474–82. https://doi.org/10.1016/j.carbpol.2013.08.046.

Wlodarski K, Tajber L, Sawicki W. Physicochemical properties of direct compression tablets with spray dried and ball milled solid dispersions of tadalafil in PVP-VA. Eur J Pharm Biopharm 2016;109:14–23. https://doi.org/10.1016/j.ejpb.2016.09.011.

Zhong L, Zhu X, Luo X, Su W. Dissolution properties and physical characterization of telmisartan-chitosan solid dispersions prepared by mechanochemical activation. AAPS PharmSciTech 2013;14:541–50. https://doi.org/10.1208/s12249-013-9937-1.

Bolourchian N, Panah MS. The Effect of Surfactant Type and Concentration on Physicochemical Properties of Carvedilol Solid Dispersions Prepared by Wet Milling Method. Iran J Pharm Res 2022;21. https://doi.org/10.5812/ijpr-126913.

Piras CC, Fernández-Prieto S, De Borggraeve WM. Ball milling: A green technology for the preparation and functionalisation of nanocellulose derivatives. Nanoscale Adv 2019;1:937–47. https://doi.org/10.1039/c8na00238j.

Asare-Addo K, Levina M, Rajabi-Siahboomi AR, Nokhodchi A. Effect of ionic strength and pH of dissolution media on theophylline release from hypromellose matrix tablets - Apparatus USP III, simulated fasted and fed conditions. Carbohydr Polym 2011;86:85–93. https://doi.org/10.1016/j.carbpol.2011.04.014.

Yu JY, Kim JA, Joung HJ, Ko JA, Park HJ. Preparation and characterization of curcumin solid dispersion using HPMC. J Food Sci 2020;85:3866–73. https://doi.org/10.1111/1750-3841.15489.

Attari Z, Kalvakuntla S, Reddy MS, Deshpande M, Rao CM, Koteshwara KB. Formulation and characterisation of nanosuspensions of BCS class II and IV drugs by combinative method. J Exp Nanosci 2016;11:276–88. https://doi.org/10.1080/17458080.2015.1055841.

Mansouri M. Preparation and Characterization of Ibuprofen Nanoparticles by using Solvent/ Antisolvent Precipitation. Open Conf Proc J 2011;2:88–94. https://doi.org/10.2174/2210289201102010088.

Siregar CJ. Teknologi Farmasi Sediaan Tablet Dasar-Dasar Praktis. Jakarta: Penerbit Buku Kedokteran EGC; 2010.

Depkes RI. Farmakope Indonesia Edisi 3. Edisi 3. Jakarta: Departemen Kesehatan RI; 1979.

Kemenkes RI. Farmakope Indonesia edisi V. 2014.

Syofyan S, Yanuarto T, Octavia MD. Effect of Combination of Magnesium Stearate and Talc as a Lubricant on Dissolution Profile of Ibuprofen Tablets. J Sains Farm Klin 2015;1:195–206.

Depkes RI. Farmakope Indonesia edisi VI. 2020.

Nuraeni W, Daruwati I, W EM, Sriyani ME. Prosriding Seminar Nasional Sains dan Teknologi Nuklir Verifikasi Kinerja Alat Particle size analyzer (PSA) Horiba Lb-550 Untuk Penentuan Distribusi Ukuran Nanopartikel. Pros Semin Nas Sains Dan Teknol Nukl 2013:266–71.

Taurina W, Sari R, Hafinur UC, Wahdaningsih S, Isnindar I. Optimasi kecepatan dan lama pengadukan terhadap ukuran nanopartikel kitosan-ekstrak etanol 70% kulit jeruk siam (Citrus nobilis L.var Microcarpa). Maj Obat Tradis 2017;22:16–20. https://doi.org/10.22146/tradmedj.24302.

Ramukutty S, Ramachandran E. Growth, spectral and thermal studies of ibuprofen crystals. Cryst Res Technol 2012;47:31–8. https://doi.org/10.1002/crat.201100394.

Shittu AO, Njinga NS, Orshio SD. Development and Characterization of Ibuprofen Solid Dispersion for Solubility and Dissolution improvement using a binary carrier system consisting of D- Mannitol - Polyethylene Glycol 6000. Niger J Pharm 2022;56:109–18. https://doi.org/10.51412/psnnjp.2022.12.

Gusfarendi, Taurina W. Uji amilum limbah batang kelapa sawit (Elaeis guineensis Jacq.) sebagai bahan pengikat pada tablet parasetamol. J Penelit Dan Pengemb Borneo Akcaya 2014;01:46–54.

Shah HS, Sardhara R, Nahar K, Xu T, Delvadia P, Siddiqui A, et al. Development and Validation of Sample Preparation and an HPLC Analytical Method for Dissolution Testing in Fed-State Simulated Gastric Fluid—Illustrating Its Application for Ibuprofen and Ketoconazole Immediate Release Tablets. AAPS PharmSciTech 2020;21. https://doi.org/10.1208/s12249-020-01702-3.

Bjarnason I, Sancak O, Crossley A, Penrose A, Lanas A. Differing disintegration and dissolution rates, pharmacokinetic profiles and gastrointestinal tolerability of over the counter ibuprofen formulations. J Pharm Pharmacol 2018;70:223–33. https://doi.org/10.1111/jphp.12827.

Das SK, Kahali N, Bose A, Khanam J. Physicochemical characterization and in vitro dissolution performance of ibuprofen-Captisol® (sulfobutylether sodium salt of β-CD) inclusion complexes. J Mol Liq 2018;261:239–49. https://doi.org/10.1016/j.molliq.2018.04.007.

Sari DP, Mafruhah OR, Sulaiman TNS. Uji Disolusi Terbanding Tablet Metformin Hidroklorida Generik Berlogo Dan Bermerek. Pharm J 2013;9:254–8.

Rohmani S, Rosyanti H. Perbedaan Metode Penambahan Bahan Penghancur secara Intragranular- Ekstragranular terhadap Sifat Fisik serta Profil Disolusi Tablet Ibuprofen. JPSCR J Pharm Sci Clin Res 2019;4:95–108. https://doi.org/10.20961/jpscr.v4i2.33622.

Sinko PJ, Singh Y, editors. Martin’s physical pharmacy and pharmaceutical sciences 6th edition. Sixth edit. Philadelphia: Wolter Kluwer Health; 2011.