Main Article Content

Ibrahim
Eti Yerizel
Endrinaldi
Gusti Revilla

Page: 2008-2016

Abstract

Obesity is a condition of abnormality or excess fat accumulation in adipose tissue. HMG-CoA reductase is an enzyme that can catalyse HMG-CoA into mevalonate, which is needed in cholesterol biosynthesis. Inhibition of the HMG-CoA reductase enzyme is an effective drug target mechanism to overcome dyslipidemia. Black garlic, which is high in antioxidants such as SAC, flavonoids, and polyphenols, is an effective mechanism. This study tested the bioactivity and health effects of black garlic on the activity of HMG-CoA reductase enzyme. This type of experimental study on male rats uses a post-test control-only group design. The sample in this study was 25 experimental animals divided into five groups, group negative control with a regular diet, group positive control with a high-fat diet, group treatment 1 with a high-fat diet and black garlic dose of 200 mg/rats, group treatment 2 with a high-fat and black garlic diet dose of 400 mg/rats, and group treatment given a high-fat diet and black garlic dose of 800 mg/rats. The results of the study showed that the average value and standard deviation of HMG-CoA in the negative control group were 1,044 and 0.088, the positive control group 2,136 and 0.487, the 1 group treatment 1,292 and 0.194, the 2 group treatment 1,296 and 0.206 and the three treatment group 1,201 and 0.201 nmol/min/mg protein. Based on the results of the hypothesis test, the significance level for the five groups was 0.004, indicating a significant difference in the average HMG-CoA levels in groups K1, K2, P1, P2, and P3. Black garlic significantly decreased HMG-CoA reductase activity in rats fed a high-fat diet, supporting its potential as a natural therapeutic agent for dyslipidemia management.

Downloads

Download data is not yet available.

Article Details

How to Cite
Ibrahim, I., Yerizel , E., Endrinaldi, E., & Revilla, G. (2025). Bioactivity and Health Effect of Black Garlic on Hydroxy Methylglutaryl-CoA Reductase Enzyme Activity in Male Obese Rattus Norvegicus Strain Wistar. Journal of Pharmaceutical and Sciences, 8(3), 2008–2016. https://doi.org/10.36490/journal-jps.com.v8i3.1039
Section
Original Articles

References

Ahmed, T., & Wang, C. K. (2021). Black garlic and its bioactive compounds on human health diseases: A review. Molecules, 26(16). https://doi.org/10.3390/molecules26165028 DOI: https://doi.org/10.3390/molecules26165028

Ahmed, S. K., & Mohammed, R. A. (2025). Obesity: Prevalence, causes, consequences, management, preventive strategies and future research directions. Metabolism Open, 27(April), 100375. https://doi.org/10.1016/j.metop.2025.100375 DOI: https://doi.org/10.1016/j.metop.2025.100375

Akl, M. G., Fawzy, E., Deif, M., Farouk, A., & Elshorbagy, A. K. (2017). Perturbed adipose tissue hydrogen peroxide metabolism in centrally obese men: Association with insulin resistance. Association with Insulin Resistance : PLoS ONE UNITED STATES, 12(5), 1–16. https://doi.org/10.1371/journal.pone.0177268 DOI: https://doi.org/10.1371/journal.pone.0177268

Amos, D. L., Robinson, T., Massie, M. B., Cook, C., Hoffsted, A., Crain, C., & Santanam, N. (2017). Catalase overexpression modulates metabolic parameters in a new ‘stress-less’ leptin-deficient mouse model. Biochimica et Biophysica Acta - Molecular Basis of Disease, 1863(9), 2293–2306. https://doi.org/10.1016/j.bbadis.2017.06.016 DOI: https://doi.org/10.1016/j.bbadis.2017.06.016

Amudi, T., Pandelaki, K., & Palar, S. (2021). Hubungan antara hs-CRP, Adiponektin, Fetuin A terhadap Resistensi Insulin pada Pria Dewasa Muda dengan Obesitas Sentral. E-CliniC, 9(1), 231–237. https://doi.org/10.35790/ecl.v9i1.32476 DOI: https://doi.org/10.35790/ecl.v9i1.32476

Anaeigoudari, A., Safari, H., & Khazdair, M. R. (2021). Effects of Nigella sativa, Camellia sinensis, and Allium sativum as Food Additives on Metabolic Disorders, a Literature Review. Frontiers in Pharmacology, 12(November), 1–15. https://doi.org/10.3389/fphar.2021.762182 DOI: https://doi.org/10.3389/fphar.2021.762182

Aziz, S., Adliani, N., & Sukrasno. (2020). Molecular docking of oryzanol derivative compounds to the enzyme 3-hydroxy-3-methyl-glutaryl-coenzyme A (HMG-CoA) reductase. Journal of Science and Applicable Technology, 4(June 2019), 43–48. https://journal.itera.ac.id/index.php/jsat/%0AReceived DOI: https://doi.org/10.35472/jsat.v4i1.191

Bansal, A. B., & Cassagnol, M. (2024). Inhibitor HMG-CoA Reduktase. StatPearls Publishing, Klinik, Cleveland, Ohio.

Baskaran, G., Salvamani, S., Ahmad, S. A., Shaharuddin, N. A., Pattiram, P. D., & Shukor, M. Y. (2015). HMG-CoA reductase inhibitory activity and phytocomponent investigation of Basella alba leaf extract as a treatment for hypercholesterolemia. Drug Design, Development and Therapy, 9, 509–517. https://doi.org/10.2147/DDDT.S75056 DOI: https://doi.org/10.2147/DDDT.S75056

Blanco, A., Putih, G., Kathleen, K., Fisiologi, D., & Hawaii, U. (2017). Medical Biochemistry. University of Kansas Medical Centre, Kansas, 325–365. https://doi.org/10.1016/B978-0-12-803550-4.00015-X DOI: https://doi.org/10.1016/B978-0-12-803550-4.00015-X

Chae, J., Lee, E., Oh, S. M., Ryu, H. W., Kim, S., & Nam, J. O. (2023). Aged black garlic (Allium sativum L.) and aged black elephant garlic (Allium ampeloprasum L.) alleviate obesity and attenuate obesity-induced muscle atrophy in diet-induced obese C57BL/6 mice. Biomedicine and Pharmacotherapy, 163(March), 114810. https://doi.org/10.1016/j.biopha.2023.114810 DOI: https://doi.org/10.1016/j.biopha.2023.114810

Chang, W. L., Liu, P. Y., Yeh, S. L., & Lee, H. J. (2022). Effects of Dried Onion Powder and Quercetin on Obesity-Associated Hepatic Manifestation and Retinopathy. International Journal of Molecular Sciences, 23(19). https://doi.org/10.3390/ijms231911091 DOI: https://doi.org/10.3390/ijms231911091

Chang, W.-T., Shiau, D.-K., Cheng, M.-C., Tseng, C.-Y., Chen, C.-S., Wu, M.-F., & Hsu, C.-L. (2017). Black Garlic Ameliorates Obesity Induced by a High-fat Diet in Rats. Journal of Food and Nutrition Research, 5(10), 736–741. https://doi.org/10.12691/jfnr-5-10-3 DOI: https://doi.org/10.12691/jfnr-5-10-3

Colozza, D. (2020). Analisis Lanskap Kelebihan Berat Badan Dan Obesitas di Indonesia. 01 Desember 2022, 1–134. https://www.unicef.org/indonesia/id/laporan/analisis-lanskap-kelebihan-berat-badan-dan-obesitas-di-indonesia

Fu, J. A. Runquist, C. Montgomery, H. M. Miziorko, and J. J. P. Kim, “Functional insights into human HMG-CoA lyase from structures of acyl-CoA-containing ternary complexes,” J. Biol. Chem., vol. 285, no. 34, pp. 26341–26349, 2010, doi: 10.1074/jbc.M110.139931. DOI: https://doi.org/10.1074/jbc.M110.139931

Gesto, D. S., Pereira, C. M. S., Cerqueira, N. M. F. S., & Sousa, S. F. (2020). An atomic-level perspective of HMG-CoA-reductase: The target enzyme to treat hypercholesterolemia. Molecules, 25(17). https://doi.org/10.3390/molecules25173891 DOI: https://doi.org/10.3390/molecules25173891

Ha, A. W., Ying, T., & Kim, W. K. (2015). The effects of black garlic (Allium sativum) extracts on lipid metabolism in rats fed a high-fat diet. Nutrition Research and Practice, 9(1), 30–36. https://doi.org/10.4162/nrp.2015.9.1.30 DOI: https://doi.org/10.4162/nrp.2015.9.1.30

Hasim, H., Hasanah, Q., Andrianto, D., & Nur Faridah, D. (2018). Aktivitas Antioksidan Dan Antihiperkolesterolemia in Vitro Dari Campuran Ekstrak Angkak Dan Bekatul. Jurnal Teknologi Dan Industri Pangan, 29(2), 145–154. https://doi.org/10.6066/jtip.2018.29.2.145 DOI: https://doi.org/10.6066/jtip.2018.29.2.145

Huang, C., Mcallister, M. J., Slusher, A. L., Webb, H. E., Mock, J. T., & Acevedo, E. O. (2015). Obesity-Related Oxidative Stress : the Impact of Physical Activity and Diet Manipulation. Sports Medicine - Open, 1–12. https://doi.org/10.1186/s40798-015-0031-y DOI: https://doi.org/10.1186/s40798-015-0031-y

Huang, Y., Chen, H., Liu, Q., Hu, J., Hu, D., Huang, Z., Xu, Z., & Wan, R. (2023). Obesity difference in the association with blood malondialdehyde level and diastolic hypertension in the elderly population: a cross-sectional analysis. European Journal of Medical Research, 28(1), 1–8. https://doi.org/10.1186/s40001-022-00983-7 DOI: https://doi.org/10.1186/s40001-022-00983-7

Jiang, S.-Y., Li, H., Tang, J. J., Wang, J., Luo, J., Li, B., Wang, J. K., Shi, X.J., Cui, H.W., Tang, J., Yang, F., Qi, W., Qiu, W.W., & Song, B. L. (2018). Discovery of a potent HMG-CoA reductase degrader that eliminates statin-induced reductase accumulation and lowers cholesterol. Nature Communications, 9(1). https://doi.org/10.1038/s41467-018-07590-3 DOI: https://doi.org/10.1038/s41467-018-07590-3

Jo, Y., Lee, P. C. W., Sguigna, P. V., & DeBose-Boyd, R. A. (2011). Sterol-induced degradation of HMG CoA reductase depends on the interplay of two Insigs and two ubiquitin ligases, gp78 and Trc8. Proceedings of the National Academy of Sciences of the United States of America, 108(51), 20503–20508. https://doi.org/10.1073/pnas.1112831108 DOI: https://doi.org/10.1073/pnas.1112831108

Jung, K. A., Song, T. C., Han, D., Kim, I. H., Kim, Y. E., & Lee, C. H. (2005). Cardiovascular protective properties of kiwifruit extracts in Vitro. Biological and Pharmaceutical Bulletin, 28(9), 1782–1785. https://doi.org/10.1248/bpb.28.1782 DOI: https://doi.org/10.1248/bpb.28.1782

Kim, M. R., Kim, J. W., Park, J. B., Hong, Y. K., Ku, S. K., & Choi, J. S. (2017). Anti-obesity effects of yellow catfish protein hydrolysate on mice fed a 45% kcal high-fat diet. International Journal of Molecular Medicine, 40(3), 784–800. https://doi.org/10.3892/ijmm.2017.3063 DOI: https://doi.org/10.3892/ijmm.2017.3063

Kimura, S., Tung, Y. C., Pan, M. H., Su, N. W., Lai, Y. J., & Cheng, K. C. (2017). Black garlic: A critical review of its production, bioactivity, and application. Journal of Food and Drug Analysis, 25(1), 62–70. https://doi.org/10.1016/j.jfda.2016.11.003 DOI: https://doi.org/10.1016/j.jfda.2016.11.003

Lee, Y.-M., Gweon, O.-C., Seo, Y.-J., Im, J., Kang, M.-J., Kim, M.-J., & Kim, J.-I. (2009). Antioxidant effect of garlic and aged black garlic in an animal model of type 2 diabetes mellitus. Nutrition Research and Practice, 3(2), 156–161. https://doi.org/10.4162/nrp.2009.3.2.156 DOI: https://doi.org/10.4162/nrp.2009.3.2.156

Lei, M., Xu, M., Zhang, Z., Zhang, M., & Gao, Y. (2014). The analysis of saccharides in black garlic and its antioxidant activity. Advance Journal of Food Science and Technology, 6(6), 755–760. https://doi.org/10.19026/ajfst.6.106 DOI: https://doi.org/10.19026/ajfst.6.106

Li, B., Li, J., Akbari, A., Baziyar, P., & Hu, S. (2023). Evaluation of Expression of Cytochrome P450 Aromatase and Inflammatory, Oxidative, and Apoptotic Markers in Testicular Tissue of Obese Rats (Pre)Treated with Garlic Powder. Evidence-Based Complementary and Alternative Medicine, 2023. https://doi.org/10.1155/2023/4858274 DOI: https://doi.org/10.1155/2023/4858274

Manalu, R. T., Meheda, I. O., & Octaviani, C. (2021). Inhibition of HMG-CoA Reductase Activity from Active Compounds of Ginger (Zingiber officinale): In-Silico Study. Jurnal Farmasi Etam (JFE), 1(1), 32–38. https://doi.org/10.52841/jfe.v1i1.177 DOI: https://doi.org/10.52841/jfe.v1i1.177

Mozzicafreddo, M. Cuccioloni, A. M. Eleuteri, and M. Angeletti, “Rapid reverse phase-HPLC assay of HMG-CoA reductase activity,” J. Lipid Res., vol. 51, no. 8, pp. 2460–2463, 2010, doi: 10.1194/jlr.D006155. DOI: https://doi.org/10.1194/jlr.D006155

Normaidah, N., & Nurmansyah, D. (2021). Studi In Silico Senyawa Hylocereus polyrhizus dan Allium sativum terhadap Enzim HMG-CoA Reduktase. Jurnal Pharmascience, 8(2), 40. https://doi.org/10.20527/jps.v8i2.11639 DOI: https://doi.org/10.20527/jps.v8i2.11639

Oktavelia, W., & Kusuma, S. A. F. (2022). Therapy for Dyslipidemia: Plant Inhibitors of HMG-CoA Reductase. Indonesian Journal of Biological Pharmacy, 2(3), 159–170. https://jurnal.unpad.ac.id/ijbp DOI: https://doi.org/10.24198/ijbp.v2i3.41376

Puisac et al., “Differential HMG-CoA lyase expression in human tissues provides clues about 3-hydroxy-3-methylglutaric aciduria,” J. Inherit. Metab. Dis., vol. 33, no. 4, pp. 405–410, 2010, doi: 10.1007/s10545-010-9097-3. DOI: https://doi.org/10.1007/s10545-010-9097-3

Subarjati, A., & Nuryanto, N. (2015). Hubungan Indeks Massa Tubuh Dengan Kadar Leptin Dan Adiponektin. Journal of Nutrition College, 4(4), 428–434. https://doi.org/10.14710/jnc.v4i4.10121 DOI: https://doi.org/10.14710/jnc.v4i4.10121

Sumertayasa, I. N. H., Lestari, A. A. W., & Herawati, S. (2020). Gambaran trigliserida, kolesterol total, LDL, dan HDL pada pasien Diabetes Mellitus tipe 2 dengan hipertensi di Rumah Sakit Daerah Mangusada, Badung tahun 2018-2019. Intisari Sains Medis, 11(3), 1198–1205. https://doi.org/10.15562/ism.v11i3.727 DOI: https://doi.org/10.15562/ism.v11i3.727

Tran, G., Dam, S., & Le, N. T. (2018). Amelioration of Single Clove Black Garlic Aqueous Extract on Dyslipidemia and Hepatitis in Chronic Carbon Tetrachloride Intoxicated Swiss Albino Mice. International Journal of Hepatology, 2018, 1–9. https://doi.org/10.1155/2018/9383950 DOI: https://doi.org/10.1155/2018/9383950

Villaño, D., Marhuenda, J., Arcusa, R., Moreno-Rojas, J. M., Cerdá, B., Pereira-Caro, G., & Zafrilla, P. (2023). Effect of Black Garlic Consumption on Endothelial Function and Lipid Profile: A Before-and-After Study in Hypercholesterolemic and Non-Hypercholesterolemic Subjects. Nutrients, 15(14), 1–13. https://doi.org/10.3390/nu15143138 DOI: https://doi.org/10.3390/nu15143138

Xu, C., Mathews, A. E., Rodrigues, C., Eudy, B. J., Rowe, C. A., O’Donoughue, A., & Percival, S. S. (2018). Aged garlic extract supplementation modifies inflammation and immunity of adults with obesity: A randomised, double-blind, placebo-controlled clinical trial. Clinical Nutrition ESPEN, 24, 148–155. https://doi.org/10.1016/j.clnesp.2017.11.010 DOI: https://doi.org/10.1016/j.clnesp.2017.11.010

Yuniarifa, C., Djam’an, Q., & Purnasari, P. W. (2021). Differences in the Effectiveness of Simvastatin, Garlic Extract (Allium Sativum), Red Dragon Fruit Extract (Hylocereus Polyrhizus) and Their Combinations on LDL and Total Cholesterol Levels (Experimental Study on Male Dyslipidemic Rats). Syifa’ MEDIKA: Jurnal Kedokteran Dan Kesehatan, 11(2), 72. https://doi.org/10.32502/sm.v11i2.2408 DOI: https://doi.org/10.32502/sm.v11i2.2408

Zhao, X. X., Lin, F. J., Li, H., Li, H. Bin, Wu, D. T., Geng, F., Ma, W., Wang, Y., Miao, B. H., & Gan, R. Y. (2021). Recent Advances in Bioactive Compounds, Health Functions, and Safety Concerns of Onion (Allium cepa L.). Frontiers in Nutrition, 8(July). https://doi.org/10.3389/fnut.2021.669805 DOI: https://doi.org/10.3389/fnut.2021.669805

Zhou, Y., Li, H., & Xia, N. (2021). The Interplay Between Adipose Tissue and Vasculature: Role of Oxidative Stress in Obesity. Frontiers in Cardiovascular Medicine, 8(March), 1–14. https://doi.org/10.3389/fcvm.2021.650214. DOI: https://doi.org/10.3389/fcvm.2021.650214