Scientific Mapping of Brassicaceae Plants’ Potential for Anti-inflammatory Applications: A Bibliometric Analysis Covering the Period 2003−2024
Main Article Content
Page: 1216-1235
Abstract
The Brassicaceae family is recognized for its antioxidant and anti-inflammatory properties. Due to its widespread distribution, it serves as a prominent source of bioactive phytochemicals, attracting considerable research interest. Brassicaceae plants contain several secondary metabolites, including glucosinolates, which are precursors to bioactive compounds like isothiocyanates (e.g., sulforaphane) that have demonstrated anti-inflammatory effects. This study aims to investigate keywords, countries, number of publications, institutions, authors, and journals related to Brassicaceae plants as anti-inflammatory agents during the period 2003–2024 using a comprehensive bibliometric analysis method. Information was collected using the Scopus database, followed by data analysis using the Biblioshiny R Package and VOSviewer. A total of 760 articles meeting the inclusion criteria were analyzed. The results indicate that 2023 saw the largest increase in research publications, with China emerging as the leading contributor, while the USA had the highest citation count. The International Journal of Molecular Sciences was identified as the most popular publishing journal. Kyung Hee University was designated as the most productive institution, with Li Y as the author with the highest contribution. Bibliometric data also highlighted several therapeutic target molecules, including cytokines, nitric oxide, cyclooxygenase-2, and Nrf2, which play crucial roles in the action mechanisms of signature metabolites from Brassicaceae plants, including sulforaphane, isothiocyanates, glucosinolates, and flavonoids, for therapeutic purposes as anti-inflammatory, antioxidant, antimicrobial, and chemopreventive agents. These findings highlight the significant potential of Brassicaceae medicinal plants for various therapeutic mechanisms and provide recommendations for future research in the pharmacy field.
Downloads
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
References
Chen L, Deng H, Cui H, Fang J, Zuo Z, Deng J, et al. Inflammatory responses and inflammation-associated diseases in organs. Oncotarget 2017;9:7204–18. https://doi.org/10.18632/oncotarget.23208. DOI: https://doi.org/10.18632/oncotarget.23208
Zhao H, Wu L, Yan G, Chen Y, Zhou M, Wu Y, et al. Inflammation and tumor progression: signaling pathways and targeted intervention. Signal Transduct Target Ther 2021;6:263. https://doi.org/10.1038/s41392-021-00658-5. DOI: https://doi.org/10.1038/s41392-021-00658-5
Bhol NK, Bhanjadeo MM, Singh AK, Dash UC, Ojha RR, Majhi S, et al. The interplay between cytokines, inflammation, and antioxidants: mechanistic insights and therapeutic potentials of various antioxidants and anti-cytokine compounds. Biomed Pharmacother Biomedecine Pharmacother 2024;178:117177. https://doi.org/10.1016/j.biopha.2024.117177. DOI: https://doi.org/10.1016/j.biopha.2024.117177
Jain P, Pandey R, Shukla SS. Inflammation. In: Jain P, Pandey R, Shukla SS, editors. Inflamm. Nat. Resour. Its Appl., New Delhi: Springer India; 2015, p. 5–14. https://doi.org/10.1007/978-81-322-2163-0_2. DOI: https://doi.org/10.1007/978-81-322-2163-0_2
Alfaro S, Acuña V, Ceriani R, Cavieres MF, Weinstein-Oppenheimer CR, Campos-Estrada C. Involvement of Inflammation and Its Resolution in Disease and Therapeutics. Int J Mol Sci 2022;23:10719. https://doi.org/10.3390/ijms231810719. DOI: https://doi.org/10.3390/ijms231810719
Vonkeman HE, van de Laar MAFJ. Nonsteroidal anti-inflammatory drugs: adverse effects and their prevention. Semin Arthritis Rheum 2010;39:294–312. https://doi.org/10.1016/j.semarthrit.2008.08.001. DOI: https://doi.org/10.1016/j.semarthrit.2008.08.001
Gupta M, Singh N, Gulati M, Gupta R, Sudhakar K, Kapoor B. Herbal bioactives in treatment of inflammation: An overview. South Afr J Bot 2021;143:205–25. https://doi.org/10.1016/j.sajb.2021.07.027. DOI: https://doi.org/10.1016/j.sajb.2021.07.027
Idrees N, Tabassum B, Sarah R, Hussain MK. Natural Compound from Genus Brassica and Their Therapeutic Activities 2019:477–91. https://doi.org/10.1007/978-981-13-7154-7_15. DOI: https://doi.org/10.1007/978-981-13-7154-7_15
Li X, Wang F, Ta N, Huang J. The compositions, characteristics, health benefits and applications of anthocyanins in Brassica crops. Frontiers in Plant Science. 2025 Feb 17;16:1544099. https://doi.org/10.3389/fpls.2025.1544099. DOI: https://doi.org/10.3389/fpls.2025.1544099
Rahman M, Khatun A, Liu L, Barkla BJ. Brassicaceae Mustards: Phytochemical Constituents, Pharmacological Effects, and Mechanisms of Action against Human Disease. Int J Mol Sci 2024;25:9039. https://doi.org/10.3390/ijms25169039. DOI: https://doi.org/10.3390/ijms25169039
Salehi B, Quispe C, Butnariu M, Sarac I, Marmouzi I, Kamle M, et al. Phytotherapy and food applications from Brassica genus. Phytother Res PTR 2021;35:3590–609. https://doi.org/10.1002/ptr.7048. DOI: https://doi.org/10.1002/ptr.7048
Cicio A, Serio R, Zizzo MG. Anti-Inflammatory Potential of Brassicaceae-Derived Phytochemicals: In Vitro and In Vivo Evidence for a Putative Role in the Prevention and Treatment of IBD. Nutrients 2022;15:31. https://doi.org/10.3390/nu15010031. DOI: https://doi.org/10.3390/nu15010031
Mattosinhos P da S, Sarandy MM, Novaes RD, Esposito D, Gonçalves RV. Anti-Inflammatory, Antioxidant, and Skin Regenerative Potential of Secondary Metabolites from Plants of the Brassicaceae Family: A Systematic Review of In Vitro and In Vivo Preclinical Evidence (Biological Activities Brassicaceae Skin Diseases). Antioxid Basel Switz 2022;11:1346. https://doi.org/10.3390/antiox11071346. DOI: https://doi.org/10.3390/antiox11071346
Basit A, Ahmad S, Khan KUR, Aati HY, Sherif AE, Ovatlarnporn C, et al. Evaluation of the anti-inflammatory, antioxidant, and cytotoxic potential of Cardamine amara L. (Brassicaceae): A comprehensive biochemical, toxicological, and in silico computational study. Front Chem 2022;10:1077581. https://doi.org/10.3389/fchem.2022.1077581. DOI: https://doi.org/10.3389/fchem.2022.1077581
Sabin O, Pop R, Bocsan IC, Chedea V, Ranga F, Grozav A, et al. The Anti-Inflammatory, Analgesic, and Antioxidant Effects of Polyphenols from Brassica oleracea var. capitata Extract on Induced Inflammation in Rodents. Molecules 2024;29:3448. https://doi.org/10.3390/molecules29153448. DOI: https://doi.org/10.3390/molecules29153448
Darvish H. Bibliometric Analysis using Bibliometrix an R Package. J Scientometr Res 2020;8:156–60. https://doi.org/10.5530/jscires.8.3.32. DOI: https://doi.org/10.5530/jscires.8.3.32
Passas I. Bibliometric Analysis: The Main Steps. Encyclopedia 2024;4:1014–25. https://doi.org/10.3390/encyclopedia4020065. DOI: https://doi.org/10.3390/encyclopedia4020065
Falagas M, Pitsouni E, Pappas G. Comparison of PubMed, Scopus, Web of Science, and Google Scholar: Strengths and weaknesses. FASEB J Off Publ Fed Am Soc Exp Biol 2008;22:338–42. https://doi.org/10.1096/fj.07-9492LSF. DOI: https://doi.org/10.1096/fj.07-9492LSF
Hirsch JE. An index to quantify an individual’s scientific research output. Proc Natl Acad Sci U S A 2005;102:16569–72. https://doi.org/10.1073/pnas.0507655102. DOI: https://doi.org/10.1073/pnas.0507655102
Bakar A, Muhammad I, Ningrum V. Publication trend on oral mucositis induced by chemotherapy 1978-2023: Bibliometric analysis. Scr Med (Brno) 2024;55:637–44. https://doi.org/10.5937/scriptamed55-51528. DOI: https://doi.org/10.5937/scriptamed55-51528
Irham LM, Perwitasari DA, Nuari YR, Adikusuma W, Dania H, Maliza R, et al. Publication trend of TMPRSS2 as SARS-CoV-2 receptor during the COVID-19 pandemic. Pharmaciana 2023;13:58–70. https://doi.org/10.12928/pharmaciana.v13i1.24052. DOI: https://doi.org/10.12928/pharmaciana.v13i1.24052
Suprapto N, Prahani BK, Deta UA. Research trend on ethnoscience through bibliometric analysis (2011-2020) and the contribution of Indonesia. Library Philosophy and Practice. 2021;1-17. https://digitalcommons.unl.edu/libphilprac/5599.
Solikhah S, Perwitasari DA, Irham LM, Matahari R. Social Support in Quality of Life among Breast Cancer Patients after Diagnosis: A Bibliometric Analysis. Siriraj Med J 2023;75:529–38. https://doi.org/10.33192/smj.v75i7.261979. DOI: https://doi.org/10.33192/smj.v75i7.261979
Fernando D, Marbun P, Hastuti A, Rohman A. Current Trends and Future Directions in Avocado Oil Research: An Overview and A Bibliometric Analysis Across Two Time Points. Oil Crop Sci 2025;10. https://doi.org/10.1016/j.ocsci.2025.02.003. DOI: https://doi.org/10.1016/j.ocsci.2025.02.003
Ginting B, Chiari W, Duta TF, Hudaa S, Purnama A, Harapan H, et al. COVID-19 pandemic sheds a new research spotlight on antiviral potential of essential oils – A bibliometric study. Heliyon 2023;9:e17703. https://doi.org/10.1016/j.heliyon.2023.e17703. DOI: https://doi.org/10.1016/j.heliyon.2023.e17703
Arifah FH, Nugroho AE, Rohman A, Sujarwo W. A bibliometric analysis of preclinical trials of Andrographis paniculata (Burm.f.) Nees in diabetes mellitus. South Afr J Bot 2022;151:128–43. https://doi.org/10.1016/j.sajb.2021.12.011. DOI: https://doi.org/10.1016/j.sajb.2021.12.011
Arifah FH, Nugroho AE, Rohman A, Sujarwo W. A Bibliometric Approach to Preclinical Studies of Tinospora crispa (L.) Hook. f. & Thomson as an Antidiabetic. Indones J Pharm 2023:24–35. https://doi.org/10.22146/ijp.4963. DOI: https://doi.org/10.22146/ijp.4963
Handayani EW, Perwitasari DA, Purba FD, Irham LM. Bibliometric Analysis of Parents’ Health Belief Model Study of Vaccine Administration of Covid-19. Pharmacon J Farm Indones 2024:219–27. https://doi.org/10.23917/pharmacon.v21i2.4209. DOI: https://doi.org/10.23917/pharmacon.v21i2.4209
Atmadani RN, Irham LM, Perwitasari DA, Akrom A, Urbayatun S. Adherence to iron supplementation among anemic pregnant women during 1964-2022: A bibliometric analysis. Public Health Indones 2023;9:1–12. https://doi.org/10.36685/phi.v9i1.647. DOI: https://doi.org/10.36685/phi.v9i1.647
Aria M, Cuccurullo C. bibliometrix: An R-tool for comprehensive science mapping analysis. J Informetr 2017;11:959–75. https://doi.org/10.1016/j.joi.2017.08.007. DOI: https://doi.org/10.1016/j.joi.2017.08.007
van Eck NJ, Waltman L. Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics 2010;84:523–38. https://doi.org/10.1007/s11192-009-0146-3. DOI: https://doi.org/10.1007/s11192-009-0146-3
Maliza R, Irham LM, Pradika J, Pratama K, Dania H, Arya B, et al. Genetic polymorphism and the risk of diabetic foot: a bibliometric analysis from 2011-2021. Int J Public Health Sci IJPHS 2023;12:1744–52. https://doi.org/10.11591/ijphs.v12i4.23028. DOI: https://doi.org/10.11591/ijphs.v12i4.23028
Perwitasari D, Candradewi S, Solikhah S, Irham L, Purba F. Analisis Bibliometrik pada Kualitas Hidup Pasien Kanker Payudara Menggunakan Eortc: 1993-2021: Bibliometric Analysis of Quality of Life in Breast Cancer Patients Using Eortc: From 1993-2021. Med Sains J Ilm Kefarmasian 2022;7:29–38. https://doi.org/10.37874/ms.v7i1.304. DOI: https://doi.org/10.37874/ms.v7i1.304
Yuliyanto P, Ratnawiningsih H, Faridah I, Perwitasari D, Irham L, Afief A, et al. Perkembangan Studi Dengue Kaitannya dengan Interleukin (Il-6) : Bibliometrik Analisis dari Tahun 1992-2022: Trend of Dengue Study Related to Interleukin (Il-6): Bibliometric Analysis from 1992-2022. Med Sains J Ilm Kefarmasian 2023;8:21–32. https://doi.org/10.37874/ms.v8i1.389. DOI: https://doi.org/10.37874/ms.v8i1.389
Irham LM, Amukti DP, Adikusuma W, Singh D, Chong R, Basyuni M, et al. Applied of bioinformatics in drug discovery and drug development: Bioinformatic analysis 1996-2024. BIO Web Conf 2024. https://doi.org/10.1051/bioconf/202414801003. DOI: https://doi.org/10.1051/bioconf/202414801003
Irham LM, Amukti DP, Adikusuma W, Singh D, Chong R, Pranata S, et al. Trends in drug repurposing for chronic hepatitis-B infection: Bibliometric-based approach 1990-2024. BIO Web Conf 2024. https://doi.org/10.1051/bioconf/202414804003. DOI: https://doi.org/10.1051/bioconf/202414804003
Kurniawan W, Pranata S, Vranada A, Agustini A, Irham LM. Bibliometric analysis of triggers on environmental stress among medical and health sciences students at the university. Scr Med (Brno) 2024;55:371–8. https://doi.org/10.5937/scriptamed55-49741. DOI: https://doi.org/10.5937/scriptamed55-49741
Aksnes DW, Langfeldt L, Wouters P. Citations, Citation Indicators, and Research Quality: An Overview of Basic Concepts and Theories. SAGE Open 2019;9:2158244019829575. https://doi.org/10.1177/2158244019829575. DOI: https://doi.org/10.1177/2158244019829575
Juge N, Mithen RF, Traka M. Molecular basis for chemoprevention by sulforaphane: a comprehensive review. Cell Mol Life Sci CMLS 2007;64:1105–27. https://doi.org/10.1007/s00018-007-6484-5. DOI: https://doi.org/10.1007/s00018-007-6484-5
Dinkova-Kostova AT, Kostov RV. Glucosinolates and isothiocyanates in health and disease. Trends Mol Med 2012;18:337–47. https://doi.org/10.1016/j.molmed.2012.04.003. DOI: https://doi.org/10.1016/j.molmed.2012.04.003
Hubbard TD, Murray IA, Perdew GH. Indole and Tryptophan Metabolism: Endogenous and Dietary Routes to Ah Receptor Activation. Drug Metab Dispos 2015;43:1522–35. https://doi.org/10.1124/dmd.115.064246. DOI: https://doi.org/10.1124/dmd.115.064246
Nićiforović N, Abramovič H. Sinapic Acid and Its Derivatives: Natural Sources and Bioactivity. Compr Rev Food Sci Food Saf 2014;13:34–51. https://doi.org/10.1111/1541-4337.12041. DOI: https://doi.org/10.1111/1541-4337.12041
Ksouri R, Ksouri WM, Jallali I, Debez A, Magné C, Hiroko I, et al. Medicinal halophytes: potent source of health promoting biomolecules with medical, nutraceutical and food applications. Crit Rev Biotechnol 2012;32:289–326. https://doi.org/10.3109/07388551.2011.630647. DOI: https://doi.org/10.3109/07388551.2011.630647
Deng Z, Rong Y, Teng Y, Mu J, Zhuang X, Tseng M, et al. Broccoli-Derived Nanoparticle Inhibits Mouse Colitis by Activating Dendritic Cell AMP-Activated Protein Kinase. Mol Ther J Am Soc Gene Ther 2017;25:1641–54. https://doi.org/10.1016/j.ymthe.2017.01.025. DOI: https://doi.org/10.1016/j.ymthe.2017.01.025
Lin W, Wu RT, Wu T, Khor T-O, Wang H, Kong A-N. Sulforaphane suppressed LPS-induced inflammation in mouse peritoneal macrophages through Nrf2 dependent pathway. Biochem Pharmacol 2008;76:967–73. https://doi.org/10.1016/j.bcp.2008.07.036. DOI: https://doi.org/10.1016/j.bcp.2008.07.036
Yanaka A, Fahey JW, Fukumoto A, Nakayama M, Inoue S, Zhang S, et al. Dietary sulforaphane-rich broccoli sprouts reduce colonization and attenuate gastritis in Helicobacter pylori-infected mice and humans. Cancer Prev Res Phila Pa 2009;2:353–60. https://doi.org/10.1158/1940-6207.CAPR-08-0192. DOI: https://doi.org/10.1158/1940-6207.CAPR-08-0192
Manchali S, Chidambara Murthy KN, Patil BS. Crucial facts about health benefits of popular cruciferous vegetables. J Funct Foods 2012;4:94–106. https://doi.org/10.1016/j.jff.2011.08.004. DOI: https://doi.org/10.1016/j.jff.2011.08.004
Zhou Y, Li Y, Zhou T, Zheng J, Li S, Li H-B. Dietary Natural Products for Prevention and Treatment of Liver Cancer. Nutrients 2016;8:156. https://doi.org/10.3390/nu8030156. DOI: https://doi.org/10.3390/nu8030156
Jin S, Zhang SS, Shad N, Naeem A, Yang YD, Wu SK. Ethnobotanical investigation of medicinal plants used in Lingchuan county, Shanxi, China. Brazilian Journal of Biology. 2022 Jun 6;82:e260774. https://doi.org/10.1590/1519-6984.260774. DOI: https://doi.org/10.1590/1519-6984.260774
Samudra AG, Nugroho AE, Murwanti R. Bibliometric Analysis of Sargassum Potential in Diabetes Mellitus Management. BIO Web Conf 2025;167:03002. https://doi.org/10.1051/bioconf/202516703002. DOI: https://doi.org/10.1051/bioconf/202516703002
Habtemariam S. Anti-Inflammatory Therapeutic Mechanisms of Isothiocyanates: Insights from Sulforaphane. Biomedicines 2024;12:1169. https://doi.org/10.3390/biomedicines12061169. DOI: https://doi.org/10.3390/biomedicines12061169
Baird L, Yamamoto M. The Molecular Mechanisms Regulating the KEAP1-NRF2 Pathway. Mol Cell Biol 2020;40:e00099-20. https://doi.org/10.1128/MCB.00099-20. DOI: https://doi.org/10.1128/MCB.00099-20
Sihvola V, Levonen A-L. Keap1 as the redox sensor of the antioxidant response. Arch Biochem Biophys 2017;617:94–100. https://doi.org/10.1016/j.abb.2016.10.010. DOI: https://doi.org/10.1016/j.abb.2016.10.010
Suzuki T, Yamamoto M. Stress-sensing mechanisms and the physiological roles of the Keap1-Nrf2 system during cellular stress. J Biol Chem 2017;292:16817–24. https://doi.org/10.1074/jbc.R117.800169. DOI: https://doi.org/10.1074/jbc.R117.800169