Formulation and Physical Evaluation of Stevia Granule Preparations as Natural Sweetener with the Incorporation of Polyvinylpyrrolidone (PVP) as Binder
Main Article Content
Page: 827-836
Abstract
The development of natural sweetener discoveries continues to be carried out to realize healthy living behavior in its use in food and beverage products, including in the formulation of pharmaceutical preparations. Stevia (Stevia rebaudiana) is a plant that contains high sweetness and has the lowest caloric value. This study aims to formulate and physically evaluate stevia extract granule preparations using the wet granulation method with the addition of varying concentrations of Polyvinylpyrrolidone (PVP) as a binder, F0 (without PVP), F1 (1%), F2 (3%), and F3 (5%). Physical evaluation of stevia granule preparation includes organoleptic test, moisture content, flow rate, angle of repose, compressibility index and granule dissolving time in water. The results of the physical evaluation of granule preparations during 28 days storage showed that F3 was the best formula compared to other formulas, as evidenced by the results of statistical analysis using the one-way ANOVA method showing significant differences (p<0.05) between formulations. The evaluation results obtained were moisture content (<3%), flow rate (10.23 g/sec), angle of repose (27°), compressibility index (10%) and granule dissolving time (<1 minute). This study shows that the use of 5% PVP concentration in F3 as a binder can improve the physical properties of stevia granule preparations to be better than 1% and 3% concentrations.
Downloads
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
References
WHO. Which foods contain aspartame? The artificial sweetener is now considered a “possible carcinogen.” NbcnewsCom 2023. https://www.nbcnews.com/health/cancer/foods-contain-aspartame-artificial-sweetener-possible-carcinogen-rcna93913.
Mitchell SB, Hung YH, Thorn TL, Zou J, Baser F, Gulec S, et al. Sucrose-induced hyperglycemia dysregulates intestinal zinc metabolism and integrity: risk factors for chronic diseases. Front Nutr 2023;10:1–16. https://doi.org/10.3389/fnut.2023.1220533. DOI: https://doi.org/10.3389/fnut.2023.1220533
Naji‐Tabasi S, Emadzadeh B, Mousavi SF, Shahbazizadeh S, Damavandi Z. Bi-polymeric structured system (xanthan gum-carboxymethyl cellulose) for developing instant powder with the ability to suspend flixweed seeds in beverages: Effect of pH and sweetener type. Heliyon 2025;11:e41896. https://doi.org/10.1016/j.heliyon.2025.e41896. DOI: https://doi.org/10.1016/j.heliyon.2025.e41896
Tarahi M, Tahmouzi S, Kianiani MR, Ezzati S, Hedayati S, Niakousari M. Current Innovations in the Development of Functional Gummy Candies. Foods 2023;13. https://doi.org/10.3390/foods13010076. DOI: https://doi.org/10.3390/foods13010076
Sylvetsky A, Hiedacavage A, Shah NJ, Pokorney P, Baldauf S, Merrigan K, et al. From biology to behavior: a cross‐disciplinary seminar series surrounding added sugar and low‐calorie sweetener consumption. Obes Sci & Pract 2019;5:203–19. https://doi.org/10.1002/osp4.334. DOI: https://doi.org/10.1002/osp4.334
Ashwell M. Stevia, nature’s zero-calorie sustainable sweetener: A new player in the fight against obesity. Nutr Today 2015;50:129–34. https://doi.org/10.1097/NT.0000000000000094. DOI: https://doi.org/10.1097/NT.0000000000000094
Peteliuk V, Rybchuk L, Bayliak M, Storey KB, Lushchak O. Natural sweetener stevia rebaudiana: Functionalities, health benefits and potential risks. EXCLI J 2021;20:1412–30. https://doi.org/10.17179/excli2021-4211.
Wibbens K. Executive Review of the Stevia Food System “Plan B Project.” 2023.
Moongngarm A, Sriharboot N, Loypimai P, Moontree T. Ohmic heating-assisted water extraction of steviol glycosides and phytochemicals from Stevia rebaudiana leaves. Lwt 2022;154:112798. https://doi.org/10.1016/j.lwt.2021.112798. DOI: https://doi.org/10.1016/j.lwt.2021.112798
Djarot P, Badar M. Formulation and Production of Granule From Annona Muricata Fruit Juice As Antihypertensive Instant Drink. Int J Pharm Pharm Sci 2017;9:18. https://doi.org/10.22159/ijpps.2017v9i5.16506. DOI: https://doi.org/10.22159/ijpps.2017v9i5.16506
Dürig T, Karan K. Binders in Pharmaceutical Granulation. 4th ed. London: CRC Press; 2021. https://doi.org/10.1201/9780429320057-4-5. DOI: https://doi.org/10.1201/9780429320057-4-5
Bejaoui M, Galai H, Touati F, Kouass S. Multifunctional Roles of PVP as a Versatile Biomaterial in Solid State. Dos. Forms - Innov. Futur. Perspect., 2023. https://doi.org/10.5772/intechopen.99431. DOI: https://doi.org/10.5772/intechopen.99431
Kurakula M, Rao GSNK. Pharmaceutical assessment of polyvinylpyrrolidone (PVP): As excipient from conventional to controlled delivery systems with a spotlight on COVID-19 inhibition. J Drug Deliv Sci Technol 2020;60:1–27. https://doi.org/10.1016/j.jddst.2020.102046. DOI: https://doi.org/10.1016/j.jddst.2020.102046
Sakurai A, Sakai T, Sako K, Maitani Y. Polymer combination increased both physical stability and oral absorption of solid dispersions containing a low glass transition temperature drug: Physicochemical characterization and in vivo study. Chem Pharm Bull 2012;60:459–64. https://doi.org/10.1248/cpb.60.459. DOI: https://doi.org/10.1248/cpb.60.459
Regulska K, Regulski M, Wzgarda A, Kotowska A, Ignasiak A, Ćwiertnia B, et al. Does polyvinylpyrrolidone improve the chemical stability of cilazapril in solid state? Iran J Pharm Res 2019;18:579–95. https://doi.org/10.22037/ijpr.2019.1100640.
Suhery et al. 2016. Suhery 2016. Perbandingan Metod Granulasi Basah Dan Kempa Langsung Terhadap Sifat Fis Dan Waktu Hancur Orally Disintegrating Tablets Piroksikam 2016;2:138–44. DOI: https://doi.org/10.29208/jsfk.2016.2.2.65
Arisanty, Daswi DR. Formulation And Physical Quality Of Effervescent Granules Containing Rambutan (Nephelium lappaceum L) Peel Dried Extract. 3rd Int Conf Urban Heal Covid-19 Pandemic Urban Heal Issues 2021;3:200–6.
Khairi N, Sapra A, Tawali S, Indrisari DM, Farmasetika B, Farmasi T, et al. Instant Granulation Formulation of Buni Fruit Extract (Antidesma bunius L.) As an Antioxidant Drink. J Agro Ind 2023:1–10. https://doi.org/10.31186/j.agroind.14.1.1-10.
Carr RL. Basic Methods for Angle of Repose 1965;30:1–7.
Sari DP, Fahriati AR, Maelaningsih FS. Formulation of Instant Granules from Ethanolic Extract of Melinjo Peel (Gnetum gnemon L) Extract as Anti-Hyperuricemia. J Kefarmasian Indones 2023;13:140–9.
Florenly F, Lokanata S, Friando J, Mai PT, Le HH, Luzria CC, et al. Formulation and physical stability analysis of red beetroots (Beta vulgaris l.) effervescent granules. Padjadjaran J Dent 2023;35:91–7. https://doi.org/10.24198/pjd.vol35no2.47031. DOI: https://doi.org/10.24198/pjd.vol35no2.47031
Grajang IB, Wahyuningsih I. Formulation of Sechium edule Extract Effervescent Granule with the Variation of Citric Acid, Tartrate Acid and Sodium Bicarbonate 2019:54–60. https://doi.org/10.5220/0008239300540060. DOI: https://doi.org/10.5220/0008239300540060
Kemenkes RI. Farmakope Indonesia-Edisi VI. Jakarta: Dirjen Kefarmasian dan Alat Kesehatan, Kementerian Kesehatan RI.; 2020.
Sheskey PJ, Cook WG, Cable CG. Handbook of Pharmaceutical Excipients, 8th edition. London : Pharmaceutical Press ; Washington, DC : APhA; 2017. https://doi.org/10.1016/B978-0-12-820007-0.00032-5. DOI: https://doi.org/10.1016/B978-0-12-820007-0.00032-5
JECFA. JOINT FAO/WHO EXPERT COMMITTEE ON FOOD ADDITIVES Sixty-ninth meeting. 2008.
Tank D, Karan K, Gajera BY, Dave RH. Investigate the effect of solvents on wet granulation of microcrystalline cellulose using hydroxypropyl methylcellulose as a binder and evaluation of rheological and thermal characteristics of granules. Saudi Pharm J 2018;26:593–602. https://doi.org/10.1016/j.jsps.2018.02.007. DOI: https://doi.org/10.1016/j.jsps.2018.02.007
Agustin R, Ratih H. Profil Disolusi Tablet Sustained Release Natrium Diklofenak dengan Menggunakan Matriks Metolose 90 SH 4000. vol. 1. 2015. https://doi.org/10.29208/jsfk.2015.1.2.33. DOI: https://doi.org/10.29208/jsfk.2015.1.2.33
Pradhan S, Dubey N, Shukla SS, Pandey RK, Gidwani B. A Review of the Fundamentals of Pharmaceutical Granulation Technology. Int J Pharm Phytopharm Res 2023;13:1–17. https://doi.org/10.51847/ep1i15qvc4. DOI: https://doi.org/10.51847/Ep1i15qVC4
Szumilo M, Belniak P, Swiader K, Holody E, Poleszak E. Assessment of physical properties of granules with paracetamol and caffeine. Saudi Pharm J 2017;25:900–5. https://doi.org/10.1016/j.jsps.2017.02.009. DOI: https://doi.org/10.1016/j.jsps.2017.02.009
Haider SS, Nasrin N, Apu AS, Asaduzzaman M. Accelerated stability and antimicrobial sensitivity studies of amoxicillin dry suspensions marketed in Bangladesh. J Appl Pharm Sci 2011;1:51–5.
McGuire C, Siliveru K, Chakraborty S, Ambrose K, Alavi S. Flow Properties of Coarse Powders Used in Food Extrusion as a Function of Moisture Content. Processes 2024;12:1–15. https://doi.org/10.3390/pr12061246. DOI: https://doi.org/10.3390/pr12061246
Vera Zambrano M, Dutta B, Mercer DG, MacLean HL, Touchie MF. Assessment of moisture content measurement methods of dried food products in small-scale operations in developing countries: A review. Trends Food Sci Technol 2019;88:484–96. https://doi.org/10.1016/j.tifs.2019.04.006. DOI: https://doi.org/10.1016/j.tifs.2019.04.006
Lestari ABS, Angelina DMR. The effect of recompression and concentration of polyvinylpyrrolidone (PVP) K-30 on the quality of paracetamol tablets. Pharmaciana 2024;14:220. https://doi.org/10.12928/pharmaciana.v14i2.28399. DOI: https://doi.org/10.12928/pharmaciana.v14i2.28399
Devi I, Shodiquna Q, Eni N, Arisanti C, Samirana P. Optimasi Konsentrasi Polivinil Pirolidon (PVP) sebagai Bahan Pengikat tehadap Sifat Fisik Tablet Ekstrak Etanol Rimpang Bangle (Zingiber cassumunar Roxb). J Farm Udayana 2018;7:45–52. DOI: https://doi.org/10.24843/JFU.2018.v07.i02.p02
Nurhadi B, Maidannyk VA, Djali M, Herlina Dwiyanti E, Putrinda Editha N, Febrian M. Physical and functional properties of agglomerated coconut sugar powder and honey powder using polyvinylpyrrolidone as a binder. Int J Food Prop 2022;25:93–104. https://doi.org/10.1080/10942912.2021.2023177. DOI: https://doi.org/10.1080/10942912.2021.2023177
Ghasempour-Mouziraji M, Lagarinhos J, Afonso D, Alves de Sousa R. A review study on metal powder materials and processing parameters in Laser Metaleposition. Opt Laser Technol 2024;170:110226. https://doi.org/10.1016/j.optlastec.2023.110226. DOI: https://doi.org/10.1016/j.optlastec.2023.110226
Aulton ME. Pharmaceutics: The Science of Dosage form Design. 2 nd editi. London, United Kingdom: Churchill Livingstone; 2002.
Dogan M, Türker DA. Determination of the cohesion, powder flow speed dependency and caking tendency of cocoa powders. Acad Perspect Procedia 2019;2:483–91. https://doi.org/10.33793/acperpro.02.03.38. DOI: https://doi.org/10.33793/acperpro.02.03.38
Zhou YC, Xu BH, Yu AB, Zulli P. Numerical investigation of the angle of repose of monosized spheres. Phys Rev E - Stat Physics, Plasmas, Fluids, Relat Interdiscip Top 2001;64:8. https://doi.org/10.1103/PhysRevE.64.021301. DOI: https://doi.org/10.1103/PhysRevE.64.021301
Gans A, Pouliquen O, Nicolas M, Gans A, Pouliquen O, Nicolas M. A cohesion-controlled granular material To cite this version : HAL Id : hal-02591146 2020. DOI: https://doi.org/10.1103/PhysRevE.101.032904
Bhattacharyya S, Swetha. Formulation and evaluation of effervescent granules of Fexofenadine hydrochloride. Pharma Innov - J 2014;3:1–8.
Franco P, De Marco I. The use of poly(N-vinyl pyrrolidone) in the delivery of drugs: A review. Polymers (Basel) 2020;12:18–21. https://doi.org/10.3390/POLYM12051114. DOI: https://doi.org/10.3390/polym12051114
Kumar O, Rani AP. Effect of Polyvinylpyrrolidone on Complexation and Dissolution Rate of Beta Cyclodextrin and Hydroxypropyl Beta Cyclodextrin Complexes of Piroxicam. Int J Pharm Phytopharm Resear 2012;1:301–5. https://doi.org/10.4103/0250-474X.29632. DOI: https://doi.org/10.4103/0250-474X.29632
Minhas MU, Khan KU, Sarfraz M, Badshah SF, Munir A, Barkat K, et al. Polyvinylpyrrolidone K-30-Based Crosslinked Fast Swelling Nanogels: An Impeccable Approach for Drug’s Solubility Improvement. Biomed Res Int 2022;2022. https://doi.org/10.1155/2022/5883239. DOI: https://doi.org/10.1155/2022/5883239
Zheng X, Wu F, Hong Y, Shen L, Lin X, Feng Y. Improvements in sticking, hygroscopicity, and compactibility of effervescent systems by fluid-bed coating. RSC Adv 2019;9:31594–608. https://doi.org/10.1039/c9ra05884b. DOI: https://doi.org/10.1039/C9RA05884B
Siriwachirachai C, Pongjanyakul T. Particle Agglomeration of Acid-Modified Tapioca Starches: Characterization and Use as Direct Compression Fillers in Tablets. Pharmaceutics 2022;14. https://doi.org/10.3390/pharmaceutics14061245. DOI: https://doi.org/10.3390/pharmaceutics14061245
Becker D, Rigassi T, Bauer-Brandl A. Effectiveness of binders in wet granulation: a comparison using model formulations of different tabletability. Drug Dev Ind Pharm 1997;23 8:791–808. https://doi.org/10.3109/03639049709150550. DOI: https://doi.org/10.3109/03639049709150550
Tanaka R, Hattori Y, Horie Y, Kamada H, Nagato T, Otsuka M. Characterization of Amorphous Solid Dispersion of Pharmaceutical Compound with pH-Dependent Solubility Prepared by Continuous-Spray Granulator. Pharmaceutics 2019;11. https://doi.org/10.3390/pharmaceutics11040159. DOI: https://doi.org/10.3390/pharmaceutics11040159
Desta K, Tadese E, Molla F. Physicochemical Characterization and Evaluation of the Binding Effect of Acacia etbaica Schweinf Gum in Granule and Tablet Formulations. Biomed Res Int 2021;2021. https://doi.org/10.1155/2021/5571507. DOI: https://doi.org/10.1155/2021/5571507