The Side Effect Analysis of Anti-Tuberculosis Drugs Using K-Means Clustering at RSUD Prof. Dr. H. Aloei Saboe Kota Gorontalo
Main Article Content
Page: 2300-2310
Abstract
Background: The side effects of anti-tuberculosis drugs (OAT) experienced by patients often interfere with their daily activities and affect their compliance in completing relatively long-term treatment. This is one of the reasons patients discontinue OAT therapy unilaterally, which can lead to treatment failure for tuberculosis (TB). Objective: To analyse the side effects of OAT in patients at Prof. Dr. H. Aloei Saboe General Hospital in Gorontalo City using k-means clustering. Methods: Data including gender, age, OAT regimen, laboratory results, comorbidities, and types of OAT side effects were analyzed using the k-means method to determine patient clustering patterns. Research Results: The analysis yielded three clusters. Cluster 1 (25 patients) was predominantly male (80%), aged 45–54 years, received first-line OAT (88%), experienced elevated SGPT/SGOT levels (88%), had hypertension as the most common comorbidity (28%), and primarily experienced liver dysfunction as the main side effect (96%). Cluster 2 (348 patients) was predominantly male (58%), aged 35–44 years, receiving OAT line 1 (96.1%), no increase in SGPT and SGOT levels (0%), almost no increase in urea and creatinine levels (0.2%), the most common comorbidity being diabetes mellitus (22.1%). The main side effect being gastrointestinal disorders (58.9%). Cluster 3 (40 patients) was predominantly male (70%), aged 45–54 years, received OAT line 1 (97.5%), experienced an increase in urea and creatinine levels (97.5%), and the most common comorbidity was diabetes mellitus (47.5%). The main side effect was renal dysfunction (95%). Conclusion: The k-means algorithm is effective in generating clusters of patient characteristics. This clustering supports specific interventions such as comorbidity therapy management and monitoring of side effect risks, thereby optimising individualised tuberculosis (TB) treatment.
Downloads
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
References
Kementerian Kesehatan Republik Indonesia. Laporan Program Penanggulanan Tuberkulosis. Jakarta: 2022.
World Health Organization. Global Tuberculosis Report. Geneva: 2022.
Perhimpunan Dokter Paru & I. Panduan Umum Praktik Klinis Penyakit Paru dan Pernapasan. Jakarta: 2021.
World Health Organization. WHO Consolidated Guidelines on Tuberculosis: Module 4: Treatment and Care. Geneva: 2025.
Dinas Kesehatan Provinsi Gorontalo. Profil Kesehatan 2022 Provinsi Gorontalo. Gorontalo: 2022.
Kementerian Kesehatan Republik Indonesia. Pedoman Nasional Pelayanan Kedokteran: Tata Laksana Tuberkulosis. Jakarta: 2020.
Stephanie G, Saputri M.J, Makkadafi S.P. Gambaran Kadar SGOT dan SGPT Pada Pasien Tuberkulosis Paru Aktif: Description of SGOT and SGPT Levels in Active Pulmonary Tubeculosis Patients. Borneo J Med Lab Technol 2024;6:509–14. https://doi.org/10.33084/bjmlt.v6i2.5776. DOI: https://doi.org/10.33084/bjmlt.v6i2.5776
Rahman M.M, Setyawati T, Sarifuddin, Wahyuni R.D. Mekanisme OAT dalam Tubuh Yang Mengakibatkan Risiko Dili (Drug-Induced Liver Injury) : Literature Review. J Med Prof 2023;5:41–7.
Bedir F, Kocaturk H, Turangezli O, Sener E, Akyuz S, Ozgeris Fb, et al. The Protective Effect of Lycopene Against Oxidative Kidney Damage Associated With Combined Use Of Isoniazid And Rifampicin In Rats. Brazilian J Med Biol Res 2021;54:1–8. DOI: https://doi.org/10.1590/1414-431x2020e10660
Wang Y, Zheng D. The Importance Of Precision Medicine In Modern Molecular Oncology. Clin Genetics 2021;100:248–57. DOI: https://doi.org/10.1111/cge.13998
Choi D, Xiang A, Ozturk O, Shrestha D, Drake B, Haidarian H, et al. Patient Clustering Via Integrated Profiling of Clinical and Digital Data. Proc. 32nd Acm Int. Conf. Inf. Knowl. Manag., New York, Ny, Usa: Association For Computing Machinery; 2023, P. 3818–3822. https://doi.org/10.1145/3583780.3615262. DOI: https://doi.org/10.1145/3583780.3615262
Muhartini Aa, Febriati T, Sukmawati S. Analisis Cluster Untuk Mengelompokkan Penggunaan Kartu Perdana Seluler Di Universitas Bina Bangsa. J Bayesian J Ilm Stat Dan Ekon 2022;2. DOI: https://doi.org/10.46306/bay.v2i1.25
Ikotun Am, Ezugwu Ae, Abualigah L, Abuhaija B, Heming J. K-Means Clustering Algorithms: A Comprehensive Review, Variants Analysis, and Advances in The Era of Big Data. Inf Sci (Ny) 2023;622:178–210. https://doi.org/https://doi.org/10.1016/j.ins.2022.11.139. DOI: https://doi.org/10.1016/j.ins.2022.11.139
Thakur A, Parvez Mm, Leeder Js, Prasad B. Ontogeny Of Drug-Metabolizing Enzymes. Methods Mol Biol 2021;2342:551–93. https://doi.org/10.1007/978-1-0716-1554-6_18. DOI: https://doi.org/10.1007/978-1-0716-1554-6_18
Nugroho Mn, Eri Rr. The Intersection Of Tuberculosis Treatment and Blood Pressure Control: Insights From Primary Healthcare - A Case Report. J Hypertens 2024;42. DOI: https://doi.org/10.1097/01.hjh.0001027104.84084.c5
Lee Sl, Lim Wj, Chai St. Resistant Hypertension During Antituberculosis Treatment: How Is Rifampicin Implicated? Med J Malaysia 2020;75:591–3.
Trivedi P, Chaturvedi V. Interactive Effect Of Oral Anti-Hyperglycaemic Or Anti–Hypertensive Drugs On The Inhibitory And Bactericidal Activity Of First Line Anti-Tb Drugs Against M. Tuberculosis. Plos One 2023;18:1–19. DOI: https://doi.org/10.1371/journal.pone.0292397
Wai Yw, Chiu Ck, P. Cd. Oxidative Stress and First-Line Antituberculosis Drug-Induced Hepatotoxicity. Antimicrob Agents Chemother 2018;62:1. https://doi.org/10.1128/aac.02637-17. DOI: https://doi.org/10.1128/AAC.02637-17
Seri Mahayanti Nk, I Putu Alit Sudarsana. Laporan Kasus: Drug-Induced Liver Injury Pada Pasien Tuberkulosis Relaps. Intisari Sains Medis 2022;13:792–5. https://doi.org/10.15562/ism.v13i3.1554. DOI: https://doi.org/10.15562/ism.v13i3.1554
Wijaya I, Nur N, Sari H. Hubungan Gaya Hidup dan Pola Makan Terhadap Kejadian Syndrom Dispepsia di Rumah Sakit Bhayangkara Kota Makassar. J Promot Prev 2020;3:58–68. https://doi.org/10.47650/jpp.v3i1.149. DOI: https://doi.org/10.47650/jpp.v3i1.149
Khateeb J, Fuchs E, Khamaisi M. Diabetes and Lung Disease: A Neglected Relationship. Rev Diabet Stud 2019;15:1–15. https://doi.org/10.1900/rds.2019.15.1. DOI: https://doi.org/10.1900/RDS.2019.15.1
Khasanah Hr, Pudiarifanti N, Baharyati D, Meliyarta E, Nurul Inayah A. Identification Of Side Effects Of Use Of Anti Tuberculosis Drugs In Padang Serai and Telaga Dewa Health Centres Bengkulu 2024. Avicenna J Ilm 2025;19:190–9. https://doi.org/10.36085/avicenna.v19i3.7452. DOI: https://doi.org/10.36085/avicenna.v19i3.7452
Putri V, Muslim Z, Susilo A. Analisis Kejadian Efek Samping Obat Anti Tuberkulosis Di Kota Bengkulu. J Nurs Public Heal 2024;12:187–92. https://doi.org/10.37676/jnph.v12i1.6368. DOI: https://doi.org/10.37676/jnph.v12i1.6368
Fenton A, Montgomery E, Nightingale P, Peters Am, Sheerin N, Wroe Ac, et al. Glomerular Filtration Rate: New Age- and Gender- Specific Reference Ranges and Thresholds for Living Kidney Donation. BMC Nephrol 2018;19. https://doi.org/10.1186/s12882-018-1126-8. DOI: https://doi.org/10.1186/s12882-018-1126-8
Trihartati Vm, Budiman A, Hartini H. Gambaran Kadar Ureum dan Kreatinin Serum Pada Pasien Diabetes Melitus Tipe-2 di RS Santa Maria Pekanbaru. J Sains Dan Teknol Lab Med 2019;4:44–53. DOI: https://doi.org/10.52071/jstlm.v4i2.45
Hahr Aj, Molitch Me. Management of Diabetes Mellitus in Patients with CKD: Core Curriculum 2022. Am J Kidney Dis Off J Natl Kidney Found 2022;79:728–36. https://doi.org/10.1053/j.ajkd.2021.05.023. DOI: https://doi.org/10.1053/j.ajkd.2021.05.023
Risma R, Rahman A. Pengaruh Lama Waktu Konsumsi Obat Pada Penderita TB Terhadap Kadar Kreatinin dan Ureum di Laboratorim RSUW UIT Makassar 2018. J Media Laboran 2022;10:48–52.
Djasang S, Saturiski M. Studi Hasil Pemeriksaan Ureum dan Asam Urat Pada Penderita Tuberkulosis Paru yang Mengonsumsi Obat Anti Tuberkulosis (OAT) Fase Intensif. J Media Anak Kesehat 2019;10:59–71. DOI: https://doi.org/10.32382/mak.v10i1.985
Wikarno, Rheo Malani, BS. Perbandingan Metode K-Means dan Fuzzy C-Means. Pros Semin Ilmu Komput dan Teknol Inform 2018,;3:45-52.
Chander S, Vijaya P. Unsupervised learning methods for data clustering. In: Raja N, Shanmugam L, eds. Unsupervised Learn Methods Data Clustering. 2021;41–64. DOI: https://doi.org/10.1016/B978-0-12-820601-0.00002-1
Mauvais-Jarvis F, Berthold H, Campesi I, Carrero J, Dhakal S, Franconi F, Gouni-Berthold I, Heiman M, Kautzky-Willer A, Klein S, Murphy A, Regitz-Zagrosek V, Reue K, Rubin J. Sex- and gender-based pharmacological response to drugs. Pharmacol Rev 2021;73:730–62. DOI: https://doi.org/10.1124/pharmrev.120.000206
Konstandi M, Johnson EO. Age-related modifications in CYP dependent drug metabolism: role of stress. Front Endocrinol 2023;14:1–10. DOI: https://doi.org/10.3389/fendo.2023.1143835