Molecular Docking Study of Luteolin and its Derivatives for Identifying Potential ER-α Inhibitors in Breast Cancer
Main Article Content
Page: 2127-2142
Abstract
Breast cancer remains one of the leading causes of cancer-related mortality worldwide, with estrogen receptor alpha (ER-α) serving as a primary therapeutic target in hormone-dependent subtypes. Resistance to current endocrine therapies underscores the need for alternative compounds with improved efficacy and safety. Luteolin, a naturally occurring flavonoid, has gained attention as a potential anticancer agent, but its structural modifications may alter biological activity. This study evaluated the binding affinity and interaction profiles of luteolin and its glycosylated derivatives (luteolin 7-glucuronide and luteolin 7-O-glucoside) against ER-α using molecular docking (PDB ID: 7UJ8). The results revealed that luteolin consistently exhibited stronger binding affinity (−7.2 to −8.0 kcal/mol) and stable RMSD values compared to its derivatives, though it remained significantly weaker than the reference drug 4-hydroxytamoxifen (−8.9 to −9.4 kcal/mol). Structural analysis demonstrated that luteolin’s superiority arises from its ability to maintain extensive hydrophobic and π–π stacking interactions within the ER-α binding pocket. In contrast, glycosylation introduced bulky polar substituents that disrupted hydrophobic contacts and reduced binding affinity. These findings highlight luteolin as the most promising scaffold among the tested compounds and underscore the structural basis for why glycoside derivatization diminishes ER-α binding. Future work should focus on enhancing luteolin’s bioavailability without compromising its key hydrophobic interactions to advance its potential as a lead candidate for breast cancer therapy.
Downloads
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
References
Bray F, Laversanne M, Sung H, Ferlay J, Siegel RL, Soerjomataram I, et al. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2024;74:229–63. https://doi.org/10.3322/caac.21834. DOI: https://doi.org/10.3322/caac.21834
Issroviatiningrum R, Wijayanti K, Keperawatan FI, Islam U, Agung S. Pembentukan “ GEKAPEKAN ” ( Gerakan Kader Peduli Kanker ) dengan edukasi dan pelatihan sadari. J Pengabdi Harapan Ibu 2025;7:141–7.
Cheang MCU, Martin M, Nielsen TO, Prat A, Voduc D, Rodriguez-Lescure A, et al. Defining Breast Cancer Intrinsic Subtypes by Quantitative Receptor Expression. Oncologist 2015;20:474–82. https://doi.org/10.1634/theoncologist.2014-0372. DOI: https://doi.org/10.1634/theoncologist.2014-0372
Li X, Li Z, Li L, Liu T, Qian C, Ren Y, et al. Toremifene, an Alternative Adjuvant Endocrine Therapy, Is Better Than Tamoxifen in Breast Cancer Patients with CYP2D6*10 Mutant Genotypes. Cancer Res Treat 2024;56:134–42. https://doi.org/10.4143/crt.2023.652. DOI: https://doi.org/10.4143/crt.2023.652
Lawson M, Cureton N, Ros S, Cheraghchi-Bashi A, Urosevic J, D’Arcy S, et al. The Next-Generation Oral Selective Estrogen Receptor Degrader Camizestrant (AZD9833) Suppresses ER+ Breast Cancer Growth and Overcomes Endocrine and CDK4/6 Inhibitor Resistance. Cancer Res 2023;83:3989–4004. https://doi.org/10.1158/0008-5472.CAN-23-0694. DOI: https://doi.org/10.1158/0008-5472.CAN-23-0694
Cook MT. Breast Cancer-Targets and Therapy Dovepress Mechanism of metastasis suppression by luteolin in breast cancer 2018:89–100. DOI: https://doi.org/10.2147/BCTT.S144202
Prasher P, Sharma M, Singh SK, Gulati M, Chellappan DK, Zacconi F, et al. Luteolin: a flavonoid with a multifaceted anticancer potential. Cancer Cell Int 2022;22:1–11. https://doi.org/10.1186/s12935-022-02808-3. DOI: https://doi.org/10.1186/s12935-022-02808-3
Çetinkaya M, Baran Y. Therapeutic Potential of Luteolin on Cancer. Vaccines 2023;11. https://doi.org/10.3390/vaccines11030554. DOI: https://doi.org/10.3390/vaccines11030554
Daina A, Michielin O, Zoete V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci Rep 2017;7:1–13. https://doi.org/10.1038/srep42717. DOI: https://doi.org/10.1038/srep42717
Wang R, Li X, Xu Y, Li Y, Zhang W, Guo R, et al. Progress, pharmacokinetics and future perspectives of luteolin modulating signaling pathways to exert anticancer effects: A review. Med (United States) 2024;103:e39398. https://doi.org/10.1097/MD.0000000000039398. DOI: https://doi.org/10.1097/MD.0000000000039398
Ntalouka F, Tsirivakou A. Luteolin: A promising natural agent in management of pain in chronic conditions. Front Pain Res 2023;4:1–19. https://doi.org/10.3389/fpain.2023.1114428. DOI: https://doi.org/10.3389/fpain.2023.1114428
Gendrisch F, Esser PR, Schempp CM, Wölfle U. Luteolin as a modulator of skin aging and inflammation. BioFactors 2021;47:170–80. https://doi.org/10.1002/biof.1699. DOI: https://doi.org/10.1002/biof.1699
Li Y, Ning J, Wang Y, Wang C, Sun C, Huo X, et al. Drug interaction study of flavonoids toward CYP3A4 and their quantitative structure activity relationship (QSAR) analysis for predicting potential effects. Toxicol Lett 2018;294:27–36. https://doi.org/10.1016/j.toxlet.2018.05.008. DOI: https://doi.org/10.1016/j.toxlet.2018.05.008
Rong H, Zeng Y, Zheng N, Wang Y, Guo Z, Wang K, et al. The Mechanisms of Luteolin in Treating COVID-19 Based on Bioinformatics Analysis and Molecular Docking. Infect Dis Immun 2023;3:97–100. https://doi.org/10.1097/ID9.0000000000000067. DOI: https://doi.org/10.1097/ID9.0000000000000067
Fatisa Y, Utami L, Syahri J. Studi Molecular Docking dan Evaluasi Farmakokinetik Senyawa Analog Pirazol Turunan Benzen- Sulfonilurea sebagai Inhibitor Enzim Aldose Reduktase and α - Glukosidase Menggunakan Pendekatan In Silico. J Ris Kim 2024;2:11–26. DOI: https://doi.org/10.25077/jrk.v15i2.633
Elfita L, Apriadi A, Supandi S, Dianmurdedi S. Studi Penambatan Molekuler dan Simulasi Dinamika Molekuler Senyawa Turunan Furanokumarin terhadap Reseptor Estrogen Alfa (ER-α) Sebagai Anti Kanker Payudara. J Sains Farm Klin 2023;9:255. https://doi.org/10.25077/jsfk.9.3.255-264.2022. DOI: https://doi.org/10.25077/jsfk.9.3.255-264.2022
Giordano D, Biancaniello C, Argenio MA, Facchiano A. Drug Design by Pharmacophore and Virtual Screening Approach. Pharmaceuticals 2022;15:1–16. https://doi.org/10.3390/ph15050646. DOI: https://doi.org/10.3390/ph15050646
Zhu H, Zhou R, Cao D, Tang J, Li M. A pharmacophore-guided deep learning approach for bioactive molecular generation. Nat Commun 2023;14:1–11. https://doi.org/10.1038/s41467-023-41454-9. DOI: https://doi.org/10.1038/s41467-023-41454-9
Wu L, Lin Y, Gao S, Wang Y, Pan H, Wang Z, et al. Luteolin inhibits triple-negative breast cancer by inducing apoptosis and autophagy through SGK1-FOXO3a-BNIP3 signaling. Front Pharmacol 2023;14:1–14. https://doi.org/10.3389/fphar.2023.1200843. DOI: https://doi.org/10.3389/fphar.2023.1200843
Ikhtiarudin I, Dona R, Frimayanti N, Utami R, Susianti N, Septama AW. Sintesis, Karakterisasi Struktur, dan Kajian Molecular Docking Senyawa Turunan 4’-Metoksi Flavonol sebagai Antagonis Reseptor Estrogen Alpha (ER-a) pada Kanker Payudara. J Ris Kim 2022;13:236–49. https://doi.org/10.25077/jrk.v13i2.553. DOI: https://doi.org/10.25077/jrk.v13i2.553
Zsidó BZ, Bayarsaikhan B, Börzsei R, Szél V, Mohos V, Hetényi C. The Advances and Limitations of the Determination and Applications of Water Structure in Molecular Engineering. Int J Mol Sci 2023;24:25–9. https://doi.org/10.3390/ijms241411784. DOI: https://doi.org/10.3390/ijms241411784
Samways ML, Bruce Macdonald HE, Taylor RD, Essex JW. Water Networks in Complexes between Proteins and FDA-Approved Drugs. J Chem Inf Model 2023;63:387–96. https://doi.org/10.1021/acs.jcim.2c01225. DOI: https://doi.org/10.1021/acs.jcim.2c01225
Zhang D, Meng Q, Guo F. Incorporating Water Molecules into Highly Accurate Binding Affinity Prediction for Proteins and Ligands. Int J Mol Sci 2024;25. https://doi.org/10.3390/ijms252312676. DOI: https://doi.org/10.3390/ijms252312676
Min CK, Nwachukwua JC, Hou Y, Russo RJ, Papa A, Min J, et al. Asymmetric allostery in estrogen receptor- α homodimers drives responses to the ensemble of estrogens in the hormonal milieu. Proc Natl Acad Sci 2017;120:2017. https://doi.org/10.1073/pnas. DOI: https://doi.org/10.1073/pnas
Huang W, Peng Y, Kiselar J, Zhao X, Albaqami A, Mendez D, et al. Multidomain architecture of estrogen receptor reveals interfacial cross-talk between its DNA-binding and ligand-binding domains. Nat Commun 2018;9:1–10. https://doi.org/10.1038/s41467-018-06034-2. DOI: https://doi.org/10.1038/s41467-018-06034-2
Katzenellenbogen JA. Stringing along the estrogen receptor to engage with DNA. Proc Natl Acad Sci U S A 2023;120:10–2. https://doi.org/10.1073/pnas.2300608120. DOI: https://doi.org/10.1073/pnas.2300608120
Setiawansyah A, Susanti G, Hidayati N, Gemantari BM, Alrayan R, Hadi I, et al. Telaah Potensi Antivirus Mitraginin terhadap Protease 3CLpro SARS-CoV-2 dengan Pendekatan Molecular Docking. Sinteza 2024;4:65–73. https://doi.org/10.29408/sinteza.v4i2.25634. DOI: https://doi.org/10.29408/sinteza.v4i2.25634
Warjianto W, Soewoto W, Alifianto U, Wujoso H. Hubungan Reseptor Estrogen, Reseptor Progesteron dan Ekspresi Her-2/Neu Dengan Grading Histopatologi pada Pasien Kanker Payudara di RSUD dr. Moewardi Surakarta. Smart Med J 2020;3:96. https://doi.org/10.13057/smj.v3i2.35228. DOI: https://doi.org/10.13057/smj.v3i2.35228
Mangani S, Piperigkou Z, Koletsis NE, Ioannou P, Karamanos NK. Estrogen receptors and extracellular matrix: the critical interplay in cancer development and progression. FEBS J 2025;292:1558–72. https://doi.org/10.1111/febs.17270. DOI: https://doi.org/10.1111/febs.17270
Saha T, Lukong KE. Decoding estrogen receptor and GPER biology : structural insights and therapeutic advances in ER a − positive breast cancer. Front Oncol 2025:1–32. https://doi.org/10.3389/fonc.2025.1513225. DOI: https://doi.org/10.3389/fonc.2025.1513225
Yaşar P, Ayaz G, User SD, Güpür G, Muyan M. Molecular mechanism of estrogen–estrogen receptor signaling. Reprod Med Biol 2017;16:4–20. https://doi.org/10.1002/rmb2.12006. DOI: https://doi.org/10.1002/rmb2.12006
Sudhesh Dev S, Zainal Abidin SA, Farghadani R, Othman I, Naidu R. Receptor Tyrosine Kinases and Their Signaling Pathways as Therapeutic Targets of Curcumin in Cancer. Front Pharmacol 2021;12:1–26. https://doi.org/10.3389/fphar.2021.772510. DOI: https://doi.org/10.3389/fphar.2021.772510
Manalu RT. Molecular Docking Senyawa Aktif Buah Dan Daun Jambu Biji (Psidium guajava L.) Terhadap Main Protease Pada SARS- CoV-2. Forte J 2021;01:9–16. DOI: https://doi.org/10.51771/fj.v1i2.89
Forli S, Huey R, Pique ME, Sanner MF, Goodsell DS, Olson AJ. Computational protein–ligand docking and virtual drug. Nat Protoc 2016;11:905–19. https://doi.org/10.1038/pj.2016.37. DOI: https://doi.org/10.1038/nprot.2016.051
Shofi M. Studi in Silico Senyawa Kuarsetin Daun Kencana Ungu (Ruellia tuberosa L.) Sebagai Agen Antikanker Payudara. J Sint Penelit Sains, Terap Dan Anal 2022;2:1–9. https://doi.org/10.56399/jst.v2i1.13. DOI: https://doi.org/10.56399/jst.v2i1.13
Linowiecka K, Szpotan J, Godlewska M, Gaweł D, Zarakowska E, Gackowski D, et al. Selective Estrogen Receptor Modulators’ (SERMs) Influence on TET3 Expression in Breast Cancer Cell Lines with Distinct Biological Subtypes. Int J Mol Sci 2024;25. https://doi.org/10.3390/ijms25168561. DOI: https://doi.org/10.3390/ijms25168561
Shivanika C, Deepak Kumar S, Ragunathan V, Tiwari P, Sumitha A, Brindha Devi P. Molecular docking, validation, dynamics simulations, and pharmacokinetic prediction of natural compounds against the SARS-CoV-2 main-protease. J Biomol Struct Dyn 2022;40:585–611. https://doi.org/10.1080/07391102.2020.1815584. DOI: https://doi.org/10.1080/07391102.2020.1815584
Chairunisa F, Safithri M, Andrianto D, Kurniasih R, Irsal RAP. Molecular Docking of Red Betel Leaf Bioactive Compounds (Piper crocatum) as Lipoxygenase Inhibitor. Indones J Pharm Sci Technol 2023;10:90. https://doi.org/10.24198/ijpst.v10i2.38934. DOI: https://doi.org/10.24198/ijpst.v10i2.38934
Sakkiah S, Selvaraj C, Hong H, Guo W, Liu J, Ge W, et al. Elucidation of agonist and antagonist dynamic binding patterns in ER-α by integration of molecular docking, molecular dynamics simulations and quantum mechanical calculations. Int J Mol Sci 2021;22. https://doi.org/10.3390/ijms22179371. DOI: https://doi.org/10.3390/ijms22179371
Kiyama R. Estrogenic flavonoids and their molecular mechanisms of action. J Nutr Biochem 2023;114:109250. https://doi.org/10.1016/j.jnutbio.2022.109250. DOI: https://doi.org/10.1016/j.jnutbio.2022.109250
Xue Q, Liu X, Russell P, Li J, Pan W, Fu J, et al. Evaluation of the binding performance of flavonoids to estrogen receptor alpha by Autodock, Autodock Vina and Surflex-Dock. Ecotoxicol Environ Saf 2022;233:113323. https://doi.org/10.1016/j.ecoenv.2022.113323. DOI: https://doi.org/10.1016/j.ecoenv.2022.113323
Arévalo-Salina EL, Nishigaki T, Olvera L, González-Andrade M, Xolalpa-Villanueva W, López-Romero EO, et al. Change in selectivity of estrogen receptor alpha ligand-binding domain by mutations at residues H524/L525. Biochim Biophys Acta - Gen Subj 2025;1869. https://doi.org/10.1016/j.bbagen.2025.130775. DOI: https://doi.org/10.1016/j.bbagen.2025.130775
Shtaiwi A, Adnan R, Khairuddean M, Khan SU. Computational investigations of the binding mechanism of novel benzophenone imine inhibitors for the treatment of breast cancer. RSC Adv 2019;9:35401–16. https://doi.org/10.1039/c9ra04759j. DOI: https://doi.org/10.1039/C9RA04759J
Thumma V, Mallikanti V, Matta R, Dharavath R, Jalapathi P. Design, synthesis, and cytotoxicity of ibuprofen-appended benzoxazole analogues against human breast adenocarcinoma. RSC Med Chem 2024;15:1283–94. https://doi.org/10.1039/d3md00479a. DOI: https://doi.org/10.1039/D3MD00479A