Adsorption of Naphtol Blue Black (NBB) Dye over Immobilized Chitosan from Shrimp Shells onto Glass Plate


Naphtol Blue Black (NBB)
Adsorption isotherms
Adsorption Kinetics

How to Cite

sheilatina, sheilatina, Fathurrahmi, F., & Robbani, F. (2022). Adsorption of Naphtol Blue Black (NBB) Dye over Immobilized Chitosan from Shrimp Shells onto Glass Plate. Journal of Pharmaceutical And Sciences, 5(1), 21-32.
Abstract viewed = 58 times
pdf downloaded = 59 times


The adsorption of naphtol blue black (NBB) dye using immobilized chitosan on the glass plates had been investigated. The chitosan is derived from chitin deacetylation shrimp shells waste with the degree of deacetylation of chitosan is 75.7%. The produced chitosan were analyzed using FTIR and SEM. The effects of different reaction parameters such as mass of adsorbent, initial pH of solution and initial dye concentration were studied for the adsorption NBB dye. The results from this research showed that 30 mg of adsorbent mass at initial pH 6.0 yielded the optimum conditions for the adsorption of 30 mg/L NBB dye solution at the immobilized chitosan interface with the percentage removal of the dye is 97.187%. The equilibrium adsorption data of this research were analyzed by Langmuir and Freundlich isotherm models.  The maximum adsorption capacity is obtained by using Freundlich isotherm with a correlation coefficient (R2) for 0,989 is greater than the value (R2) 0.968 of Langmuir isotherm which the nF and Kf values were 3.56 and 41.78 L/g respectively. The maximum adsorption capacity (qmax) calculated from the Langmuir model is found to be 45,45 mg/g. The kinetics of the NBB dye adsorption nicely followed the pseudo-first rate which demonstrates that physisorption is the possible rate-limiting step controlling the adsorption process in this research.


Agustina, S., Swantara, I.M.D., dan Suartha, I.N. (2015). Isolasi Kitin, Karakterisasi, dan Sintesis Kitosan Dari Kulit Udang. Jurnal Kimia. 9(2): 271-278.

Amar, A. H., (2006). Development of a simple dip coating method for immobilization of TiO2 onto solid supports using direct TiO2 powder. M Sc Thesis: Universiti Sains Malaysia.

Artioli, Y., (2008). Adsorption. Encyclopedia of Ecology.: 60-65.

Asci Y., Açıkel Ü., Sag Açıkel Y. (2012). Equilibrium, hysteresis and kinetics of cadmium desorption from sodium-feldspar using rhamnolipid biosurfactant. Environmental Technology. 1-12.

Domszy, J.G. and Roberts, G.A.F. (1985). Evaluation of Infrared Spectroscopic Techniques for Analyzing Chitosan. Journal MakromalChem. 186:1671-1677.

Emil E. Thybring, Charles R. Boardman, Samuel L. Zelinka, Samuel V. (2021). Glass Common Sorption Iisotherm Models are not Physically Valid for Water in wood. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 627 127214.

Ferkous, H., Merouani, S., Hamdaoui, O., Rezgui, Y.and Guemini, M. (2015). Comprehensive Experimental and Numerical Investigation of The Effect of Frequency and Acoustic Intensity on The Sonolytic Degradation of Naphthol Blue Black in water, Ultrasonic Sonochemsitry, 26 (2015) 30-39.

Kamari, A., Ngah WSW., Liew LK., (2009). Chitosan and Chemically Modified Chitosan Beads for Acid Dyes Sorption. Journal of Environmental Sciences. 21:296-302.

Nawi, M. A., Sabar, S., Jawad, A. H., Sheilatina, Ngah W. S. W. (2010). Adsorption of Reactive Red 4 by Immobilized khitosan on glass plates: Towards the design of immobilized TiO2-khitosan synergistic photocatalyst-adsorption bilayer system. Biochemical Engineering Journal. 49: 317-325.

Ngah, W. S. W. And Fatinathan, S. (2008). Adsorption of Cu (II) ions in aqueous solution using chitosan beads, chitosan-GLA beads and chitosan-alginate beads. Chemical Engineering Journal. 143:62-72.

Ngoh Y. S., (2010). Immobilization of TiO2 powder onto glass plate via dip-coating technique using ENR-50/PVC polymer blend as a adhesives and its photocatalytic application. M Sc Thesis: Universiti Sains Malaysia.

Purwanti, Ani., (2014). Evaluasi Proses Pengolahan Limbah Kulit Udang Untuk Meningkatkan Mutu Khitosan yang Dihasilkan. Jurnal Teknologi. Vol 7. No.1:83-90.

Rahmi. (2007). Adsorpsi Fenol pada Membran Komposit Khitosan Berikatan Silang, Jurnal Rekayasa Kimia dan Lingkungan, 6:28-34.

Rinaudo M. (2006). Chitin and chitosan: Properties and applications, Progress in polymer science journal. 31: 603-632.

Rustan, F. R., Sriyani, R., & Talanipa, R. (2019). Analisis Pemakaian Air Bersih Rumah Tangga Warga Perumahan Bumi Mas Graha Asri Kota Kendari. Stabilita, 7(2), 151–160.

Ruzicka, O. dan L. Safira. (2014). Aplikasi Fotokatalis TiO2 Pada Degradasi Limbah Cair Zat Warna Tekstil, Lomba Karya Ilmiah Sumber Daya Air Tahun 2014.

Sadeghi, Mousa. Arami, M., Gharanjig, K. (2013). Preparation of chitosan-ethyl acrylate as a biopolymer adsorben for basic dyes removal from colored solutions. Journal of Environmental Chemical Engineering. 1: 406-416.

Saeed, M., Munir, M., Nafees, M., Shah, S. S. A., Ullah, H., and Waseem, A. (2019). Synthesis, characterization and applications of silylation based grafted bentonites for the removal of Sudan dyes: isothermal, kinetic and thermodynamic studies. Micropor. Mesopor. Mater. 291:109697. doi: 10.1016/j.micromeso.109697.

Selvaggi, R., Tarpani, L., Santuari, A., Giovagnoli, S., Latterini, L. (2015). Silica Nanoparticles Assisted Photodegradation of Acridine Orange in Aqueous Suspensions. Applied Catalysis B, Environmental, 168-169: 363-369.

Sheilatina, Lubis, S., Fathurrahmi and Oktari, L., (2021). Characterization and Investigation on Photocatalytic Activities of TiO2/Coconut Shell-Based Activated Carbon, Indonesian Journal of Fundamental and Applied Chemistry, 6 (2), 33-39.

Zhao, Y., yang, B., Xu, J., Fu, Z., Wu, M., Li, F. (2012). Facile synthesis of Ag nanoparticles supported on TiO2 inverse opal with enhanced visible-light photocatalytic activity. Thin Solid Films. 520 3515–3522.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.


Download data is not yet available.